«Дирижабли»

«Дирижабли»

Константин Эдуардович Циолковский

1931

Цифровая копия оригинального букинистического издания. Состоит из качественных копий страниц оригинального ценного экземпляра, полученных путём сканирования всех страниц этой брошюры. Позволяет читателю насладиться старинным особенным шрифтом, а так же особой полиграфией, которая свойственна для времени, когда был выпущен в свет её оригинал.

 


Полет и его средства.

Полетом называется движение без соприкосновения с сушей и жидкостью, напр., океаном. Полет может быть в плотных слоях воздуха, до 12 верст высоты в тропосфере, затем еще выше, в более разреженных слоях воздуха — в стратосфере, наконец — вне атмосферы — в пустоте, выше 300—500 верст. (Для краткости километр называю верстой).

Есть несколько способов полета: 1) движение (брошенный камень, артиллерийский снаряд, небесные тела), 2) отталкивание воздушной среды (аэроплан, птица), 3) отталкивание веществ, запасенных в самом снаряде (ракета), 4) давление среды по закону Архимеда (аэростат). Иногда два, даже три способа служат одновременно: напр., дирижабль двигается ветром, поддерживаемый давлением среды, как водное судно и в то же время воздушным винтом отталкивает среду. Также стратоплан (т. е. аэроплан высот) может пользоваться и реактивным методом и воздушным винтом. Кроме того все приборы в воздухе теряют часть своего веса. Значит пользуются и законом Архимеда. [2]

Первый способ, т. е. бросание с земли, может служить в в воздухе, и в пустоте, и в среде тяжести и без ней; также третий способ, т. е. реактивное действие.

Отталкивание среды, конечно, не пригодно там, где ее нет, напр., в пустоте. Здесь действует только запасенная опора.

Конечно, без среды и тяжести неприменим и закон Архимеда. .
Аэроплан и дирижабль

Для полета ниже 12 верст, т. е. в тропосфере, на практике, существуют два снаряда: аэроплан и дирижабль.

Аэроплан, или самолет, подобен жесткокрылому насекомому, напр., майскому жуку (хрущу), который распустил свои верхние твердые крылья, а тонкими во всю мочь машет. Подобие неполное, так как у жука движение пропеллера колебательное, а у самолета вращательное. Полного подобия аэроплана в природе мы не знаем (как, впрочем, и подобия множества других машин. Точное копирование животных неудачно).

Дирижабль же можно сравнить с подводной лодкой, только его окружает среда в 800 раз более легкая, чем вода. Он также двигается винтом и поддерживается на весу давлением среды (по закону Архимеда).

Аэроплан в последнее время достиг почти предела в своем совершенстве, дирижабль же далек [3]еще от него, несмотря на то, что прежде родился аэростат (1783 г.), а потом аэроплан (1904 г.). Аэростату 147 лет, а самолету, 26.

Однако мысль об аэроплане появилась гораздо раньше мысли об аэростате. О первом мечтали чуть не первые люди на земле, видевшие полет бесчисленных насекомых и птиц. Но и летающие облака (которые считались плотными и тяжелыми) наводили, с незапамятных времен, человека на идею о полете другого сорта. Нагретый воздух, поднимающий дым и легкие тела, также наводил на мысль о другом способе полета. Мыльный пузырь, надутый теплым дыханием человека, я думаю, впервые подал мысль об изобретении аэростата. Монгольфье заметил, что по близости жаровни висевшая около юбка вздулась и поднялась. Это послужило причиною изобретения им в 1783 г. воздушного шара. Осуществление его было доступнее прибора с крыльями и потому; раньше вошло в жизнь.

Аэростат с непроницаемой оболочкой мог вечно носиться в воздухе, не требуя никакого расхода сил. Он был подобен лодке или кораблю, носящемуся по воле течений. Если бы нашли средство делать оболочки аэростатов непроницаемыми и дешевыми, и умели пользоваться течениями воздуха, то этот способ движения был бы самым экономным в мире. Только вот лодка сохраняет свое положение на поверхности воды, а аэростат то поднимается, то опускается под влиянием [4]метеорологических влияний. Это еще осложняет его использование.

Теперь обратимся к самолету. Он держится на воздухе только при быстром поступательном движении, при чем он должен тратить большую работу: во-первых, на одоление силы тяжести, во-вторых, на борьбу с сопротивлением воздуха. В, общем, то и другое требует расхода от 30 до 300 сил на летающего человека. .

Чем меньше подъемная сила аэроплана, тем меньше относительный расход энергии для полета. В общем, сносный аэроплан, даже для одного человека, требует 50—100 сил. Избежать этого расхода невозможно. Но маленькие аэропланы—не хозяйственны. Хозяйственный самолет должен иметь несколько человек, служащих и по крайней мере в пять раз больше пассажиров. Если, напр., будет пять служащих, то надо 25 платных пассажиров, а всего 30 летающих людей. Только тогда он будет иметь хоть некоторые удобства для путешествия и некоторую безопасность. Это потребует от самолета больших размеров и большого относительного расхода энергии.

Понятно, что аэроплан может служить лишь для перевозки писем, дорогих грузов и людей, не стесняющихся расходом на дорогу.

Грузоподъемные самолеты еще в периоде своего развития. Оно достигнет еще своей высоты и некоторой степени экономности. Но и низший предел ее всегда будет высок. За то те, кому надо [5]быстро переправиться через океан, пустыню, или совершить вообще длинный путь в короткое время, будут прибегать к аэроплану, (поднимающему несколько десятков человек и доставляющему своим пассажирам некоторые скромные удобства, однако далекие от комфорта на пароходе или будущем дирижабле.

Последний может двигаться медленнее аэроплана, пользоваться искусно воздушными течениями, иметь громадные размеры и тысячи людей в гондоле. Поэтому путешествие на дирижаблях будет гораздо прекраснее и дешевле, чем на самолетах.

Дирижабль будет служить для перевозки дешевых грузов и простецких пассажиров, которые не могут или не хотят делать больших расходов на путешествие или переселение.

Дирижабли еще более, чем аэропланы находятся в периоде своего развития и еще дальше от пределов своего совершенства.

Устройство дирижабля подобно устройству подводной лодки (субмарины). Тот же мотор, тот же гребной винт, та же борьба с устойчивостью продольной оси и положением относительно поверхности океана.

С одной стороны борьба эта для субмарины проще, с другой же, вследствие отсутствия воздуха, ослабления света и громадного внешнего давления воды, — та же борьба труднее. [6] Дирижабли трех родов.

На практике, т. е. в жизни, мы пока имеем дирижабли трех сортов: мягкие, жесткие и полужесткие.

У первых все части, кроме гондолы и мотора, сделаны из мягких материалов: прорезиненной ткани, веревок и проч. Парсеваль даже воздушный винт ухитрился сделать мягким. Строительство дирижаблей началось с такого их сорта. Причина — малые размеры первых аэростатов и требуемая для них весьма легкая оболочка.

Жесткие дирижабли устроены также, но они имеют твердую клетку, скелет иди корпус обтянутый чем-то вроде брезента. Такие могли появиться только при сравнительно громадных размерах.

У полужестких воздушных кораблей каркас не полный. Большею частию, нижняя половина дирижабля, его основание имеет твердую решетчатую форму. Эти дирижабли средних размеров.

Последние две категории кораблей изобретены и введены в употребление позднее мягких.

Все эти системы в употреблении и имеют, так сказать, право гражданства.

Были попытки делать дирижабли, или хоть создавать проекты, иных систем. Но они пока не были удачны. Мы скажем о них далее.

Указанные три главных сорта кораблей имеют много общего.

1) Так, наружную их форму и объем стараются делать неизменными. Для достижения этого все [7]дирижабли с каркасом и без него имеют внутри особые отделения с воздухом. Когда легкий газ, наполняющий оболочку корабля, расширяется, то часть воздуха из нее вытесняется наружу. При сжатии же газа тот же воздух устремляется внутрь дирижабля, дополняя его объем.

2) Мягкие части дирижабля сгораемы, а иногда и самый каркас, устроенный, напр., из дерева.

3) Все мягкие перегородки проницаемы для газов и воздуха. Каркас, конечно, как сквозная клетка, удержать газ не может.

4) Газы горючи. При смешении с воздухом они образуют взрывчатую смесь, подобную пороху. Негорючий гелий пока употребляется только для военных кораблей в Америке. Но он вдвое тяжелее водорода. Притом он не устраняет пожара ни снаружи, ни внутри оболочки.

Отсюда видно, что все современные дирижабли доступны для внутреннего и внешнего возгорания и представляют для пассажиров такую же опасность, как для человека, курящего папиросу и сидящего на бочке с порохом.

Наибольший успех имели жесткие дирижабли, притом особенной системы. Их каркас позволяет придавать им громадные размеры и такую же грузопод’емность. Они перелетали через океаны, обширные пустыни, целые материки и даже делали кругосветные рейсы. Но и маленькие мягкие дирижабли не вышли из употребления и имеют свои преимущества. [8] Жесткие дирижабли.

Опишем такой дирижабль, который считается последним реальным и наиболее совершенным продуктом дирижаблестроения.

Дирижабль имеет хорошую легко обтекаемую воздухом форму. Форма эта сохраняется очень сложным, дорого стоющим металлическим каркасоом. Довольно взглянуть на иллюстрации цепеллиновских верфей со строющимся там каркасом, чтобы ужаснуться сложности и дороговизне дела.

Карас разделен проволочными сетками на 15—20 отделений, содержащих обыкновенные шары с гелием. Кроме того, там же помещаются мешки с горючим газом плотности воздуха (или меньше). И еще остается обширное пространство, занятое воздухом. Весь каркас обтянут одним или двумя параллельными слоями брезента.

Мы не говорим про гребные винты, моторы, рули, оперение и проч. Это у всех дирижаблей приблизительно одинаково.

Как же управляются подобные дирижабли? Управляемость мы разделим на: 1) отвесную (поднятие, опускание, сохранение высоты); 2) поступательную (горизонтальное движение вперед) и 3) осевую (горизонтальность оси или определенный небольшой ее наклон).

1. Отвесная управляемость.

Сжигание газообразного горючего в моторах не изменяет подъемную силу дирижабля и потому высота его от этого над уровнем океана не [9]изменяется. Сжигание бензина или нефти в моторах облегчит его и заставит подняться, но потеря газа через просачивание может уравновесить этот дефект.

Однако, что вы сделаете, когда солнечные лучи нагреют оболочку (и газ) и дирижабль устремится в высь? Тут неизбежно выпускание дорогого газа. Также — если после этого небо покроется облаками, то дирижабль охладится и начнет падать. Как поддержать тогда его под’емную силу? Неизбежна потеря балласта. Он — мертвый груз и запасы его — большой минус. Сжигание бензина можно отчасти уравновешивать сгущением части продуктов горения в воду, что и применяется теперь. Со внезапными же нагреваниями и охлаждениями, при полуоблачной погоде, можно удачно бороться только через потерю газа и балласта.

Если равновесие соблюдено, то, наклонив немного дирижабль (во время его поступательного движения), можем таким способом опуститься или подняться на желаемую высоту. Это же изменяет его подъемную силу и значит как бы может служить для отвесной управляемости.

Но, к сожалению, как показывают расчеты, производимая таким путем подъемная сила очень ограничена и никак не может бороться с метеорологическими влияниями.

2 Поступательная управляемость вполне достигается, когда самостоятельная скорость корабля от работы моторов больше скорости ветра. А так как скорость последняго достигает значительной [10]величины, то и мощность моторов дирижабля должна быть большей. Но во множестве случаев она может быть маленькой, напр., когда: 1) скорость ветра мала; 2) когда он попутный; 3) когда путь немного уклоняется от направления ветра.

Управляемость поступательная еще состоит из прямолинейности движения и желаемом изменении поступательной скорости. Прямолинейность обусловливается горизонтальностью продольной оси или желаемым неизменным ее наклоном. Скорость же движения, кроме этого, — переменною и желаемою работою моторов. Повидимому, современные дирижабли обладают достаточно этим свойством, иначе приземление было бы затруднительным: при впуске и поднятии, первое время самостоятельная скорость дирижабля должна быть равна и противоположна (по направлению) скорости ветра. Только тогда моменты начала и конца путешествия благополучны, ибо равнодействующее движение будет отвесным (столбом).

3. Направление продольной оси корабля, благодаря множеству перегородок, горизонтальному рулю (высоты), оперению и перемещению груза в гондоле, кажется, сохраняется достаточно. Однако мы слышали жалобы д-ра Брунса, одного из цепеллиновских капитанов, на сильные наклоны воздушных кораблей. С наклонами, производимыми циклонами, цепеллиновские средства борьбы нельзя считать достаточными. От неодолимых наклонов может весьма пострадать скорость поступательного движения корабля и даже самая его целость. [11]

Ради сохранения легкого газа, его резервуары, т. е. шары делаются из бычачьих кишек. Сотни тысяч их искусно склеиваются с тканью и так составляются мало проницаемые сферические мешки.

Недостатки описанного дирижабля еще в следующем:

1. Дороговизна и трудность работы на высотах при постройке. Необходимость при этом дорогой верфи.

2. Чрезвычайная пожарная опасность. Мягкие ткани шаров, то сжимаясь, то расширяясь, трутся друг о друга и могут дать электрическую искру, зажигающую газообразное горючее. Огневые моторы, бензин, или нефть, неосторожность команды или пассажиров также грозят гибелью от пожара.

3. Воздушные отделения увеличивают об’ем дирижабля и сопротивление воздуха при его движении. Они также способствуют внутреннему пожару.

4. Гелий вдвое тяжелее водорода. В Европе его нет и он не доступен по своей высокой ценности. Притом он нисколько не устраняет пожарной опасности в виду присутствия в оболочке запасов газообразного горючего, воздуха и органических оболочек.

5. Отвесная управляемость слаба. Равновесие достигается не без потери газа и балласта. Борьба с (метеорологическими влияниями без этого непосильна. Нагревание же газа не применимо в виду [12]сгораемости всех частей возд. корабля, кроме каркаса и гелия.

6. Недостаточная устойчивость продольной оси корабля вынуждает к употреблению обильного оперения. Оно же увеличивает сопротивление воздуха.

7. Хрупкость всей системы. В связи со слабой вертикальной управляемостью, она представляет большую опасность при самых легких ударах о почву, напр., при спуске. Это вынуждает к употреблению причальных башен сложного устройства, с лифтами для выхода и входа пассажиров.

8. Колебательное движение воздуха (волнистое, неравномерное его течение или порывистый ветер) приводит в трепетание натянутую между шпангоутами (окружные фермы) и стрингерами (продольные фермы) наружную оболочку дирижабля и тем весьма сильно увеличивает сопротивление среды при поступательном движении воздушного гиганта.

9. Сложное устройство весьма увеличивает вес дирижабля и тем уменьшает его полезную грузопод’емностъ.

10. Оно же уменьшает его прочность и предельные размеры, которые могли бы быть больше, если бы конструкция не была такой сложной. Увеличение же размеров увеличивает и быстроту поступательного движения, или уменьшает расход горючего при той же скорости.

11. Обилие шаров, при продольных выстрелах, произведет сразу до 30 дыр, через которые дорогие газы будут быстро утекать. [13]

12. Недостаточная прочность и жесткость наружной оболочки делает ее неудобной для очистки от снега в холодных странах и зимой — в умеренных.

13. Быстрая разрушаемостъ и загниваемость органического материала.

14. Некоторая угловатость наружной формы (вследствие присутствия каркаса) и увеличение от того сопротивления воздуха.

15. О многих недостатках мы еще не говорим.

Американские дирижабли с металлической наружной оболочкой неизменной формы и объема.

Пытаются наружную оболочку дирижабля делать металлической, т. е. непроницаемой для газов. Притом форму ее желают сохранить неизменной.

Последнее вызывает необходимость каркаса, подобного цепеллиновскому. Избежать при этом воздушных отделений или мешков с воздухом невозможно.

Давление атмосферы постоянно изменяется от множества причин: метеорологических, поднятия и опускания дирижабля, изменения температуры и проч. Уравновесить это давление изнутри довольно трудно.

При малейшем нарушении разности давлений внутреннего и наружного, каркас меняет слегка форму, металлическая оболочка трещит, морщится и дает неправильные складки и трещины. Газ утекает, газ не держится. В результате необходимость [14]15-и шаров из бодрюша или прорезиненной ткани. Нельзя обойтись и без переборок. Их требует одновременно и неизменяемость формы каркаса.

В конце концов неизбежно получается тот же цепеллин, только с утяжеленной оболочкой и с маленьким уменьшением пожарной опасности.

В общем едва ли мы тут что выиграем. Цепеллиновские верфи весьма благоразумно придерживаются наружно эластической и легкой брезентовой ткани.
Цельнометаллический дирижабль с изменяемом объемом.

Если объем и форма дирижабля изменяются, как у старинного мягкого дирижабля без воздушных отделений, сообразно внешнему давлению атмосферы, то ему не будет надобности в употреблении вечно надуваемых воздушных отделений. Но обыкновенный (исторический) дирижабль при этом морщится, образует углубления на поверхности и совершенно теряет способность к быстрому поступательному движению, Кроме того, его продольная ось наклоняется оттого, что газ устремляется из одного конца оболочки в другой вследствие малого сверхдавления, нос задирается кверху или опускается книзу и это сугубо мешает управлению.

Цельнометаллический дирижабль, из волнистого металла; описанный мною в печати еще в 1892 году, изменяет объем и форму, как мягкий (без [15]балонетов или каркаса), но не образует неправильных огромных складок, не меняет плавности формы и не ковыряет носом.

Первое достигается поперечной гофрировкой, второе — стягивающей системой.

Отвесное управление получается благодаря то сильному, то слабому подогреванию оболочки продуктами горения из рабочих цилиндров мотора.

Все это ясно видно из последующего описания и чертежей. (см. особый отлас. металлич. дирижабля).

 


 


***


book2Вы ознакомились с одной из книг Константина Эдуардовича Циолковского.

Хотите узнать больше? На нашем сайте в разделе «Научное наследие» вы найдете множество его статей, доступных как для онлайн-чтения, так и для бесплатной загрузки в формате PDF.

Приятного погружения в мир мыслей и идей великого ученого!