К. Циолковский.

Давление на плоскость
при ее нормальном движении в воздухе.

Калуга, Брут, 81, К. Э. Циолковскому.
У. д. С. С. Р., Калуга, К. Tzialkowski =
C. Ziolkowsky = Ciolkowsky (latin).

Калуга
1930 г.
К. Циолковский.

Давление на плоскость при ее нормальном движении в воздухе.

(Написано в 1929 г.)

I. ПРЕДИСЛОВИЕ АВТОРА.

Я даю тут, как мне кажется, новое по со-противлению воздуха. Но, во первых, я не считаю это строго научным, во вторых, не уверен, что кто нибудь не дал ранее тех же формул.

Если последнее так, то, конечно, я отказываюсь от приоритета и извиняюсь в своем неведении.

Выводы, сделанные вторично, открытия Америк в двадцатом веке, разумеется, человечеству не нужны.

Все же повторение, сделанных уже ранее открытий, не вредно, а в последующих случаях даже драгоценно.

Именно:

А. Когда выводы, сделанные ранее, не обратили на себя должного внимания.

Б. Когда они были забыты.

В. Когда служат проверкой или подтверждением.

Г. Когда выходят более понятными.

Д. Когда выходят с дополнениями.
Работа извлечена из рукописи и номера оставлены старые.

Взятая мною на себя задача имеет много применений, между прочим—к определению сжатия воздуха в переднем отверстии летящего самолета или другого снаряда.

Дело в том, что этим сжатием, в разреженных слоях воздуха, можно усилить работу моторов. С другой стороны, сопротивление воздуха от сжатия настолько тормозит движение прибора, что приходится, при некоторых скоростях, отказаться от быстрого движения. Мы тут укажем и на пределы этих скоростей для тел разной формы.

Обозначение величин.

Форм. 50 — 79. Тут (Д₁) означает давление атмосферы а (Д) сверхдавление на движущуюся нормально плоскость. Скорость = Ск. Секундное ускорение падающих на земле тел = Уз. В 58 (Д) означает полное давление, а в 59 и далее — сверхдавление.

Сжатие газа.

11. Сначала обратимся к изложению явлений, происходящих при изменении объема газа. Это необходимо при определении сопротивления воздуха движению плоскости.

Имеем некоторый объем (Об₁) совершенного газа при плотности (Пл₁), давлении на единицу (Д₁) и абсолютной температуре (Т₁). Газ расширился или сжался, без потери тепла, — и те же величины стали иными, именно: (Об), (Пл), (Д) и (Т). При этом он совершил некоторую работу (Рб.), эквивалентную изменению его температуры.

На этих основах можем составить следующие известные уравнения (новый счет из рукописи):

12... Диф. Рб = Д. Диф. Об (Диф. есть знак дифференциала).

13... Д = Д₁₁. Т. Пл., где (Д₁₁) означает давление газа при единице его плотности и единице температуры. Так что:

14... Д₁₁ = Д₁ : (Пл₁ : Т₁).

15... Пл : Пл₁ = Об₁ : Об (масса газа, конечно, неизменна).
17... Диф. \(P_b = M_\tau \). Ут. Диф. Т. Мэ.
Тут означаем массу газа (\(M_\tau \)), его теплоемкость, или удельную теплоту при постоянном объеме (Ут) и механический эквивалент тепла (Мэ.).
Для массы газа имеем:
18... \(M_\tau = P_1 \cdot Ob_1 \).
Решая эти уравнения (11 — 18), найдем:
22... \(\log\left(\frac{Ob}{Ob_1}\right) = \frac{Uт. Mэ.}{D_{11}} \log\left(\frac{T_1}{T}\right) \).
Это есть зависимость объема от abs. температуры на случай расширения газа. На случай сжатия имеем:
23... \(\log\left(\frac{Ob_1}{Ob}\right) = \frac{Uт. Mэ.}{D_{11}} \log\left(\frac{T}{T_1}\right) \).
(Логн) означает натуральный логарифм.
25... Для воздуха положим: \(Uт = 0.169; \)
\(P_1 = 0, 00129; \)
\(T_1 = 273 \) (по Цельсию — нуль); \(D_1 = 10,33 \) (тонн); \(Мэ = 248. \) Значит: \(D_{11} = 29,26; \) \(1 : D_{11} = P_{11} = 0.0343; \)
\(Uт.Мэ : D_{11} = 2,481; \) \(D_{11} : (Uт.Мэ) = 0.4032. \) Следовательно:
26... \(\log (Ob_1 : Ob) = 2.481. \logn (T : T_1). \)
27... \(\logn (T : T_1) = 0.4032 \logn (Ob_1 : Ob). \)
(Пл_{11}) есть плотность газа при единице давления и температуры.
28... На основании последней формулы, составим таблицу:
<table>
<thead>
<tr>
<th>Об_1 : Об</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>T : T_1</td>
<td>1,32</td>
<td>1,56</td>
<td>1,75</td>
<td>1,91</td>
<td>2,06</td>
<td>2,19</td>
<td>2,31</td>
<td>2,42</td>
<td>2,53</td>
<td>2,63</td>
</tr>
</tbody>
</table>
Следовательно, при каждом сжатии воздуха в 6 раз, его абс. температура увеличивается в 2 раза слишком. И обратно—при разрежении в 6 раз, она уменьшается в два раза.

Так как \((D_{11})\) не зависит от плотности, объёма и температуры воздуха, то из ф. 26 делаем такой вывод: какой бы не был объём воздуха и как бы не был он резервен или плотен,—сокращение объёма в определенное число раз (напр. в 10) всегда вызывает также определен. изменение абс. температуры в опред. число раз (по табл. в 2,53 раза).

29... На основании этого даём следующую приблизительную таблицу:

<table>
<thead>
<tr>
<th>Разрежение</th>
<th>Сжатие</th>
</tr>
</thead>
<tbody>
<tr>
<td>1296 216 36 6</td>
<td>1 6 36 216 1296</td>
</tr>
<tr>
<td>Охлаждение</td>
<td>Нагревание</td>
</tr>
<tr>
<td>18,7 37,5 75 150</td>
<td>300 600 1200 2400 4800</td>
</tr>
<tr>
<td>-254,3 -235,5 -198 -123</td>
<td>+27 327 923 2123 4527</td>
</tr>
<tr>
<td>15,6 31,2 62,5 125</td>
<td>250 500 1000 2000 4000</td>
</tr>
<tr>
<td>12,5 25 50 100</td>
<td>200 400 800 1600 3200</td>
</tr>
<tr>
<td>9,3 18,7 37,5 75</td>
<td>150 300 600 1200 2400</td>
</tr>
<tr>
<td>6,2 12,5 25 50</td>
<td>100 200 400 800 1600</td>
</tr>
<tr>
<td>3,1 6,2 12,5 25</td>
<td>50 100 200 400 800</td>
</tr>
<tr>
<td>1,6 3,1 6,2 12,5</td>
<td>25 50 100 200 400</td>
</tr>
</tbody>
</table>
Кроме третьей строки с температурой по Цельсию, тут даны только абсолютные температуры. Из таблицы видно, что сжатие обыкновенного воздуха (при уровне океана) может легко достичь его температuru до 2—3 тысяч градусов Цельсия. Если же дан разреженный газ высот, то температура от сжатия может дойти до нескольких десятков тысяч градусов, смотря по плотности и начальной температуре данного газа: чем меньше плотность, тем возможнее высокая температура, потому что возможно многократное уплотнение. Разреженный воздух высот нагревается от сжатия слабее, если он очень холоден. Но в атмосфере мы не имеем воздуха с температурой ниже 80 градусов, что соответствует довольно высокой абсолютной температуре в 193 гр. (см. строку 5-ую).
Положим для краткости (см. 14).
30... Ут. Мэ : Д, = Ут. Мэ. Пл. T1 : D1 = A.
Тогда из тех же основных уравнений (12—18) найдем:
31... Об : Ob1 = (T1 : T) A
32... T : T1 = (Ob1 : Ob) 1 : A
33... D : D1 = (T : T1) A + 1
34... T : T1 = (D : D1) 1 : (A + 1)
35... Пл : Пл1 = (T : T1) A
36... T : T1 = (Пл : Пл1) 1 : A
37... D : D1 = (Пл : Пл1) 1 + 1 : A
37... Пл : Пл1 = (D : D1) A : (1 + A)
38... Рб. = Мг. Ут. T1, Мэ. \left(1 - \frac{T}{T_1}\right)
39... \(P_\text{б} = \text{А. Д. Ооб.} \quad \text{Об.} \quad \{1 - (\text{Об.} : \text{Об})^{1 : (A+1)}\} \)

Форм. 31 и 32 показывают изменение об'ёма в зависимости от изменения температуры и обратно — изменение температуры в зависимости от изменения об'ёма. В двигателях приходится сжимать воздух для усиленной работы моторов, также, когда он очень разрежен. Вот одно из применений этих формул.

Формула 37,1 дает изменение плотности в зависимости от изменения давления. Эту формулу применяем к определению сопротивления плоскости, при быстром нормальном ее движении.

Сжимая газ, мы совершаем работу. Величину ее необходимо знать. Для того служат формулы 38 и 39.

Формулы 32,33 и 35 можно написать в одной строке:

\[39_1... T : T_1 = (\text{Об.} : \text{Об})^{1 : A} = (\text{Д.} : \text{Д.})^{1 : (A+1)} = (\text{Пл.} : \text{Пл.})^{1 : A} \]

Для всех "постоянных" газов, как известно, имеем:

40... \(Y_\text{тг} = Y_\text{тв} = \frac{M_\text{вв}}{M_\text{вр}} \) и \(\frac{M_\text{вг}}{M_\text{вр}} \)

41... \(\text{Плг} = \text{Плв} = \frac{M_\text{вв}}{M_\text{вр}} \). Здесь выражена зависимость удельной теплоты (Утг) и плотности какого нибудь газа (Плг) от удельной теплоты и плотности водорода (Утв. и Плв) и молекулярных их весов (Мвг и Мвв). Из 40, 41 и 30 теперь найдем:
42... А= (Утв. Плв). Мэ. Т₁ : Д₁. Но произведение (Утв. Плв) постоянно, поэтому и (А) постоянно. Следовательно, все выведенные формулы и законы одинаково применяются ко всем постоянным газам.

43... Во всех формулах (31 — 39₁) мы видим зависимость отношений от (А). По формуле 42, для всех постоянных газов, (А) зависит от начальных: температуры (Т₁) и давления (Д₁) на единицу площади (т. е. от упругости газа).

44... Для воздуха при уровне океана и нулевой температуре по Цельсию, А= 2,48; 1 : А = 0,403 ; А + 1 = 3,48; 1 + \frac{1}{А} = 1,403; 1 : (А + 1) = 0,287; А : (А + 1) = 0,713 (см 30, 42 и 25).

Теперь вместо строки 39₁, найдем:

45... Т : Т₁ = (Об₁ : Об)₀,₄₀₃ = (Д : Д₁)₀,₂₈₇ = (Пл : Пл₁)\sqrt{Об₁ : Об = \sqrt{Д : Д₁ = \sqrt{Пл : Пл₁}}}

Значит, для воздуха изменение абс. температуры обратно пропорционально корню (2,48) степени из изменения объема (34), или прямо пропорционально корню степени (3,48) из изменения давления или прямо пропорционально корню (2,48) степени изменения плотности.

46... (А) еще пропорционально отношению (Т₁ : Д₁). (см. 42). Следовательно, показатель корня (А или А + 1. См. 39₁) тем больше, чем больше абс. темпер. газа и чем меньше его давление (Д₁) на единицу площади, т. е. чем меньше упругость газа.
Допустим, что газ имеет постоянную температуру \((T_1) \), несмотря на изменение его объема. Это может быть на деле, если изменение объема происходит медленно, так что газ успевает охлаждаться или нагреваться внешней средой. Это бывает еще тогда, когда принимают усиленные меры для уравнения температуры газа.

Тогда в уравнениях \((12 - 17) \) \((T) \) будет постоянно\((T_1) \) и 17-е уравнение окажется ненужным. Из остальных мы получим:

\[
121. \quad \text{Диф} (Rb) = D_{11}. \ T_1. \ Пл_1. \ Об_1. \ \frac{\text{Диф} \ (Об)}{Об} \quad \text{или}
\]

на основании 14-й форм.

\[
\text{Диф} (Rb) = D_1. \ Об_1. \ \frac{\text{Диф} \ (Об)}{Об}.
\]

Интегрируя же, найдем:

\[
131. \quad Rb = D_1. \ Об_1. \ \text{Логн} \ (Об) + \text{Пост. Если} \ Ob = Ob_1, \text{то} \ Rb = O. \ \text{Поэтому:}
\]

\[
141. \quad Rb = D_1. \ Об_1. \ \text{Логн} \left(\frac{Ob}{Ob_1} \right).
\]

Если газ расширяется \((Ob > Ob_1) \), то работа будет положительна, т. е. она выделяется. Если же газ сжимается \((Ob < Ob_1) \), то работа поглощается, ибо нужна внешняя работа, чтобы его сжать и потому она будет отрицательна.

Если бы давление было постоянным, то работа, при расширении объема \((Ob_1) \) до объема \((Ob) \), была бы:

\[
151. \quad Rb = D_1. \ \text{(Ob} - Ob_1) = D_1. \ Ob_1 \ \left(\frac{Ob}{Ob_1} - 1 \right).
\]
Деля почленно уравнение 141 на уравн. 151, получим относительную работу изменения объёма при постоянной температуре. Получим:

$$ 161... P_d : P_{d1} = \log \left(\frac{Ob}{Ob_1} \right) : \left(\frac{Ob}{Ob_1} - 1 \right). $$

Также поступая с формулами 39 и 151, получим сравнительную работу при расширении и сжатии, без потери и приобретения газом тепла извне (диабатическом). Найдем:

$$ 171... P_d : P_{d1} = A \left\{ 1 - \left(\frac{Ob_1}{Ob} \right)^{1 : A} \right\} : \left(\frac{Ob}{Ob_1} - 1 \right). $$

Здесь $1 : A = 0,403$ (см. 44).

Формулы 151, 161 и 171 дают нам возможность составить таблицу относительных работ при изменении объёма: 1) при постоянном давлении, 2) при постоянной температуре и при 3) переменной (диабатическое явление).

$181...$ Все работы в таблице принимаем положительными. Чтобы получить истинные работы, конечно, нужно их умножить на работу по формуле 151. Наприм., для нормального воздуха и единицы объёма можем положить:

$T_1 = +273$ (нол по Цельсию); $P_{l1} = 0,0013$; $D_1 = 10,3$; $D_{11} = 31,4$ тонны (см. 14). Теперь вычислим:

$$ P_{d1} = D_1 \left(\frac{Ob}{Ob_1} - 1 \right) = 10,3 \left(\frac{Ob}{Ob_1} - 1 \right) \text{ тоннотетров.} $$

Напр., при тройном расширении $P_{d1} = 20,6$ т. м. $= 2060$ килограмметров.
Разберем предлагаемую таблицу (см. табл. стр. 12—13). Она разделяется толстой отвесной чертой на правую и левую половину. Левая относится к сжатию газа, правая к его расширению. Первая строка указывает на кратное изменение объема, вторая на относительное разностное изменение объема и одновременно на работу при постоянном давлении.

За 1 единицу работы во всей таблице принимается работа изменения объема на единицу при постоянном давлении (20,6 тонометров). Третья строка относится к работе сжатия при постоянной температуре, 5-я—к переменной температуре.

Обратимся к работе сжатия (левая половина). Мы видим, что благодаря непрерывно возрастающему давлению, работа сжатия гораздо больше, чем при постоянном давлении.

Так, при сжатии в 1000 раз, она возрастает от этого почти в 7 раз. При естественном же (не устраненном) возвышении температуры, также при сокращении в 1000 раз, она уже увеличивается в 37 раз. Чем меньше сжатие, тем эти уклонения меньше.

Строка 7-я указывает, во сколько раз работа сжатия больше, благодаря возвышению тепла от сжатия газа. Так, при сокращении в 1000 раз, работа увеличивается в 5,4 раза вследствие нагревания газа.

Теперь обратимся к правой половине, относящейся к разрежению газа. Тут выделяемая
<table>
<thead>
<tr>
<th>1.</th>
<th>1000</th>
<th>100</th>
<th>10</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. (Об : Об)</td>
<td>0,999</td>
<td>0,99</td>
<td>0,9</td>
<td>0,8</td>
<td>0,75</td>
<td>0,667</td>
<td>0,5</td>
</tr>
<tr>
<td>3. По форм. 161</td>
<td>6,90</td>
<td>4,65</td>
<td>2,62</td>
<td>2,01</td>
<td>1,84</td>
<td>1,65</td>
<td>1,39</td>
</tr>
<tr>
<td>4. Обратное...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. По форм. 171</td>
<td>37,2</td>
<td>13,54</td>
<td>4,22</td>
<td>2,83</td>
<td>2,48</td>
<td>2,08</td>
<td>1,59</td>
</tr>
<tr>
<td>6. Обратное...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Отношение 171 : 161</td>
<td>5,4</td>
<td>2,9</td>
<td>1,6</td>
<td>1,4</td>
<td>1,3</td>
<td>1,25</td>
<td>1,2</td>
</tr>
<tr>
<td>8. Обратное...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>99</td>
<td>999</td>
<td></td>
</tr>
<tr>
<td>0,693</td>
<td>0,549</td>
<td>0,460</td>
<td>0,402</td>
<td>0,256</td>
<td>0,046</td>
<td>0,0069</td>
<td></td>
</tr>
<tr>
<td>1,44</td>
<td>1,62</td>
<td>2,17</td>
<td>2,49</td>
<td>3,91</td>
<td>21,7</td>
<td>145,0</td>
<td></td>
</tr>
<tr>
<td>0,600</td>
<td>0,459</td>
<td>0,355</td>
<td>0,295</td>
<td>0,166</td>
<td>0,0211</td>
<td>0,00233</td>
<td></td>
</tr>
<tr>
<td>1,67</td>
<td>1,82</td>
<td>2,82</td>
<td>3,39</td>
<td>6,02</td>
<td>47,4</td>
<td>429,0</td>
<td></td>
</tr>
<tr>
<td>0,87</td>
<td>0,84</td>
<td>0,77</td>
<td>0,73</td>
<td>0,65</td>
<td>0,46</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>1,14</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>1,5</td>
<td>2,2</td>
<td>2,9</td>
<td></td>
</tr>
</tbody>
</table>
работа гораздо меньше, чем при постоянном давлении. Строка 4-я показывает, во сколько раз она меньше при постоянной температуре (или искусственным подогреванием газа извне). Так, при расширении в 10 раз, она почти в 4 раза меньше, чем при постоянном давлении. Если же происходит естественное охлаждение, то, при том же сокращении, она в 6 раз меньше (строка 6).

Все же, при постоянной температуре, работа бесконечного расширения газа беспрепятственна, хотя и растет медленно с увеличением об'ема. (Форм. 141). Напротив, работа, выделяемая расширяющимся и натураально охлаждающимся газом, совершенно ограничена, не смотря на бесконечное увеличение его об'ема (форм. 38 и 39).

Строка 8-я указывает влияние естественного охлаждения на выделяемую расширяющимся газом работу. При небольшом расширении это влияние не велико, но чем сильнее расширение, тем оно значительней. Так, при расширении в 1000 раз, естественная работа расширения газа (при свободном понижении температуры) почти в три раза меньше, чем при искусственной неизменной температуре.

Надо ли говорить, что наша таблица применима ко всем идеальным газам и перегретым непостоянным газам и параметрам. Она относится также ко всем плотностям и ко всем температурам, при которых постоянство газа еще не нарушается.
Давление встречного потока.

47... Аэроплан двигается с большой быстротой в разреженных слоях воздуха. Поэтому воздух на носу сжимается и тем может уменьшить работу компрессора. На воздух в носовом отверстии самолета происходит давление встречного потока, как на плоскость нормальную к потоку. Как же велико это давление при разных скоростях движения аэроплана?

Предупреждаю, что все последующие расчеты нельзя считать ни точными, ни строго научными. Хорошо, если они дадут хотя некоторое понятие о величине давления на плоскость, нормальную к потоку.

Когда воздух впереди плоскости мало уплотняется, то можем принять известную формулу:

$$50... D = \frac{Ck^3}{2Uz}$$

Плв, где скорость (Ск) не должна превышать 100 метров в секунду. Она выведена также и мною для сопротивления от инерции передней части воздуха (см. Труды Общества Любит. Естествознания. Физ. отдел Том 4-й 1891 г. Москва).

В этой форм. (D) означает сверхдавление, (Уз) есть ускорение земной тяжести, а (Плв). или (Пл) есть плотность воздуха.

Если же скорость больше 100 м., то воздух перед плоскостью от сильного давления уплотняется и формула 50 дает большую погрешность. В ней плотность (Пл) надо заменить по формуле:
51... Пл = Пл \cdot \left(\frac{D + D_1}{D} \right), \text{ где } (Pл_1) \text{ есть плотность спокойного воздуха, а } (D_1) \text{ атмосферное давление на единицу площади.}

Из 50 и 51 получим:

52... \quad D = \frac{Ck^2}{2U_3} \cdot Pл_1 \cdot \frac{D + D_1}{D}. \text{ Отсюда:}

53... \quad D = \frac{Ck^2}{2U_3} \cdot Pл_1 : \left\{ 1 - \frac{Pл_1}{D_1} \cdot \frac{Ck^2}{2U_3} \right\}

При малой скорости \((Ck)\) из этой формулы получается форм. 50

Из 53 видно, что скорость не может быть очень большой; необходимо условие:

54... \quad Ck < \sqrt{2U_3} \cdot D_1 : Pл_1.

55... Положим тут: \(U_3 = 10\); \(D_1 = 10\) (тонн на кв. метр), \(Pл_1 = 0.0013\). Тогда, по 54, вычислим: \(Ck < 392\) м. в сек.

Очевидно, при этой скорости как бы получается бесконечное сгущение, а потому дальнейшее увеличение скорости невозможно. Но это ошибка: во первых, потому что газы не постоянны и потому не могут бесконечно уплотняться, во первых, потому что мы не приняли во внимание нагревание от сжатия газа.

Но возвратимся пока к последним формулам. Давление по 53 больше, чем по 50 во сколько раз:

56... \quad D_{53} : D_{50} = \left\{ 1 - \frac{Pл_1}{D_1} \cdot \frac{Ck^2}{2U_3} \right\}
57... Уравнения 50, 53 и 56 дают нам следующую таблицу:

<table>
<thead>
<tr>
<th>Скорость метры</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>392</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{50})</td>
<td>0,162</td>
<td>0,65</td>
<td>1,46</td>
<td>2,60</td>
<td>4,06</td>
<td>5,85</td>
<td>7,96</td>
<td>10,0</td>
</tr>
<tr>
<td>(\lambda_{58})</td>
<td>0,162</td>
<td>0,695</td>
<td>1,7</td>
<td>3,5</td>
<td>6,85</td>
<td>14</td>
<td>39</td>
<td>Бесконечно</td>
</tr>
<tr>
<td>Отношение</td>
<td>1,016</td>
<td>1,070</td>
<td>1,171</td>
<td>1,35</td>
<td>1,68</td>
<td>2,41</td>
<td>4,90</td>
<td>Бесконечно</td>
</tr>
</tbody>
</table>
Вторая стр. показывает давление потока в тоннах на 1 кв. метр по форм. 50. Третья— тоже по ф. 53. Четвертая — отношение этих давлений. По 53 формуле, конечно, давление больше вследствие принятого в расчет сжатия воздуха. Так при 50 м. скорости ошибка = 1,6%, при 100 м. — 7%, при 250 м. ошибка уже достигает 68%.

Ясно, что формулу 50 можно принимать только до скорости в 100 — 200 метров. Но и формулу 53 нельзя принять для больших скоростей. Действительно, при 350 м. скорости, воздух давит с силой 3,9 тонн на кв. метр, отчего воздух нагревается, становится менее плотным и давление от этого уменьшается. Из табл, 28 видно, что при уплотнении газа вчетверо, абсолютная температура увеличивается в 1,75 раза. Во столько же раз разрежается воздух и уменьшается давление. Получим, по 53, чуть не вдвое больше давление, чем истинное.

58... Чтобы получить более верную формулу давления, надо принять во внимание увеличение температуры от сжатия воздуха. Формула 37, дает: Пл = Пл₁. (Д : Д₁) Λ : (Λ + Λ).

Но тут Д = Д₁ + Дс, где (Д₁) есть давление в спокойной атмосфере, а (Дс) — сверхдавление. Означая его просто через (Д), из 58 и 50, вычитая плотность (Пл₁), получим уравнение:

59... Д = \frac{Ск₉}{2у₈}. Пл₁. \left(\frac{D + D₂}{D₁}\right) Λ : (1 + Λ)
Если (Д) или сверхдавление во много раз больше спокойного давления (Д1), то можно положить:

\[60\ldots D = \frac{Ck^2}{2u_3} \cdot P_{l_1} \left(\frac{D}{D_1} \right)^{(A + 1)} \]

отсюда, определяя неизвестное (Д), найдем:

\[61\ldots D = \left(\frac{P_{l_1}}{2u_3} \right)^A \cdot \left(\frac{Ck}{D_1} \right)^{(A + 1)} \]

Надо помнить, что формула эта имеет некоторое значение, когда (Д) в несколько раз больше атмосферного давления (Д1), т. е. когда (по табл. 57) скорость больше 350—400 метров.

62... Из 42 и 43 знаем, что \(A = 2,481 \). Следовательно: \(D : D_1 = \sqrt{V} \cdot \sqrt{Ck} \cdot 6,96 \) или почти \(D : D_1 = \sqrt{V} \cdot Ck^7 \). Здесь

\[63\ldots B = \left\{ \left(\frac{P_{l_1}}{D_1} \right) : 2u_3 \right\}^{A + 1} \]

64... при уровне океана и нулевой температуре можем положить: \(P_{l_1} = 0,0013 \); \(u_3 = 10 \); \(D_1 = 10 \). Тогда найдем, что \(B = 89,10^{20} \).

65... Положив, напр., \(Ck = 400 \) м., найдем:
\(D : D_1 = 1,46 \), или \(D = 14,6 \) тонн. По формуле 50, при той же почти скорости, найдем: \(D = 10 \) тонн, а по ф. 53—бесконечное давление. При скорости большой 400 м. в сек., мы можем смело применять формулу 63.

66... Зная отношение давлений (62 и 63), по формулам 34 и 371, можем вычислить отношение абсолютных температур (Т : Т1) и отношение плотностей (Пл : Пл1).
67... При нулевой температуре и уровне океана, получим (62—64): \(\frac{D}{D_1} = 89.10^{-20} \cdot \text{Ск}^7. \\
68... \text{Также } \frac{T}{T_1} = \left(\frac{D}{D_1}\right)^{1} : \left(\frac{A}{A + 1}\right) = \left(\frac{D}{D_1}\right)^{0.287} = 6.61.10^{-6}. \text{ Ск}^2 \\
69... \text{Далее, } \frac{P_1}{P_{11}} = \left(\frac{D}{D_1}\right)^{A} : (1 + A) = 1.35.10^{-13}. \text{ Ск}^{5,01}, \text{ или приблизительно } 1.35.10^{-13}. \text{ Ск}^5.

Из 68 и 69 видно, что абс. температура возрастает пропорционально квадрату скорости, а плотность пропорц. пятой степени той же скорости.

70. Все это дает нам возможность составить следующую таблицу:

Секундная скорость в километрах.

<table>
<thead>
<tr>
<th></th>
<th>0.4</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

Отношение давлений (\(\frac{D}{D_1} \)) при уровне океана и нулевой температуре.

<table>
<thead>
<tr>
<th></th>
<th>1.46</th>
<th>6.95</th>
<th>889.6</th>
<th>1139.00</th>
<th>1.946.000</th>
<th>14.580.000</th>
<th>69.530.000</th>
</tr>
</thead>
</table>

Отношение абс. температур (\(\frac{T}{T_1} \)).

<table>
<thead>
<tr>
<th></th>
<th>1.0576</th>
<th>1.65</th>
<th>6.61</th>
<th>26.44</th>
<th>59.49</th>
<th>105.76</th>
<th>165.25</th>
</tr>
</thead>
</table>

Соответствующая абс. температур.

<table>
<thead>
<tr>
<th></th>
<th>289</th>
<th>450</th>
<th>1.804</th>
<th>7.218</th>
<th>16.241</th>
<th>28.870</th>
<th>65.100</th>
</tr>
</thead>
</table>

Отношение плотностей (\(\frac{P_1}{P_{11}} \)).

| | 1.38 | 4.31 | 138 | 4.420 | 33.530 | 141.400 | 431.200 |
71... Из форм. 63—69 видно, что отношение давлений, температур и плотностей не изменяются при неизменном отношении (Пл₁ : Д₁). Это значит, что таблица относится ко всяким слоям атмосферы, т. е. ко всякому разрежению или сжатию газа, лишь бы начальная температура невозмущенного воздуха оставалась неизменной. Большие числа этой таблицы мы можем применять к разреженным слоям воздуха, например, где он разрежен в тысячи и миллионы раз, т. е. на высотах.

При сек. скорости в 400 метров уже давление достигает почти полторы атмосферы, absol. температура доходит до 289°, или 16° по Цельсию, а плотность возрастает в 1,38 раза. При полуверстной скорости температура еще не высока (177° по Ц) и воздух еще не может светиться. Тут он уплотняется в 4,3 раза. При скорости в кило воздух бы должен накалывать тело до свечения. Уплотнение его достигает 138. При скорости в 2 кило и выше, вычисленное уплотнение не оправдывается при уровне океана, в виду непостоянства газа. Но на высотах это может отчасти оправдаться, также и в отношении высоких температур. Положим, напр., что воздух разрежен в тысячу раз. Тогда он может сгуститься в 500 тысяч раз без нарушения идеальных свойств постоянного газа (принимая в расчет очень высокую нагретость). Значит, возможна секундная скорость в 5 кило и увеличение в плотности в 431,200 раз (по таблице
70). При этом его absol. температура достигает 65 тысяч град.

Тут невольно приходит в голову воспользоваться высокой температурой сжатых очень разреженных газов для разных целей. Не разложатся ли, напр., двухатомные газы в одноатомные? Не проявятся ли радиоактивные явления?

Применение таблиц и формул возможно и при еще больших скоростях, если плоскость будет двигаться в еще более редких слоях воздуха.

72... Впрочем нужно помнить, что чем больше скорость пластинки и степень сгущения среды,—даже в разреженных слоях атмосферы,—тем числа, даваемые нашими формулами, более истинных. Действительно они были бы верны, если бы соблюдалось подобие плотностей. При небольших скоростях плотность среды кругом и далеко почти постоянна. При этих именно условиях формулы будут правильны. Но при больших скоростях уплотнение бывает только по близости движущейся пластинки. Чем же дальше от нее, тем меньше возмущается плотность. Крайняя неравномерность плотностей заставляет в наши формулы вводить переменный коэффициент, меньший единицы, который тем дальше от нее, чем скорость плоскости больше. Предлагаем математикам произвести более точные исследования
над сопротивлением плоскости с целью найти поправочный коэффициент к моим формулам сопротивления.

Итак, числа 70 таблицы тем более преуведичены, чем скорость больше.

Из 59 для всых скоростей и давлений получим:

\[
76... \frac{D_1}{D} = \text{Ск} \cdot 2 \left(\frac{\text{Пл}_1}{2 \text{Уз.} \cdot D_1} \right) \left(\frac{D_1}{D} + 1 \right)^A : (1 + A)
\]

Значит:

\[
77... \text{Ск} = \sqrt{\frac{2 \cdot \text{Уз.} \cdot D_1}{D_D_1} \cdot \frac{\text{Пл}_1}{(D : D_1) + 1} : (1 + 2 + A)}
\]

Для больших же давлений из ф. 61 получили бы:

\[
78... \text{Ск}^2 = \frac{(D : D_1)^A : (1 + A)}{(2 \text{Уз.} \cdot D_1 : \text{Пл}_1)}
\]

Воспользуемся формулой 77 для всых скоростей. Но в ней отношение \(D : D_1\) надо заменить отношением плотностей \(\text{Пл} : \text{Пл}_1\) посредством формулы 37. Найдем:

\[
79... \text{Ск}^2 = \frac{2 \text{Уз.} \cdot D_1}{\text{Пл}_1} \cdot \frac{(\text{Пл} : \text{Пл}_1)^{A+1} : A}{\left((\text{Пл} : \text{Пл}_1)^{A+1} : A + 1 \right)^A : (1 + A)}
\]

80... Положим: \(\text{Уз} = 10; D_D = 10; \text{Пл}_1 = 0,0013; A = 2,48; A : (2 + 2A) = 0,356; A : (1 + A) = 0,137; (1 + A) : A = 1,403\) (см. 44).
<table>
<thead>
<tr>
<th></th>
<th>Д : Д₁</th>
<th>Пл : Пл₁</th>
<th>Скорости в метрах</th>
<th>Необходимое для этих скоростей разрежение воздуха (см. новый аэроплан)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Д : Д₁</td>
<td>0,1</td>
<td>0,3</td>
<td>108,5</td>
<td>178</td>
</tr>
<tr>
<td>Пл : Пл₁</td>
<td>1,07</td>
<td>1,205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скорости в метрах</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Необходимое для этих скоростей разрежение воздуха (см. новый аэроплан)</td>
<td>1,18</td>
<td>3,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Д : Д₁</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пл : Пл₁</td>
<td>3,58</td>
<td>4,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скорости</td>
<td>420</td>
<td>448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Необходимое разрежение</td>
<td>17,6</td>
<td>20,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Д : Д₁</td>
<td>500</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пл : Пл₁</td>
<td>84,1</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скорости</td>
<td>871</td>
<td>955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Разрежение</td>
<td>75,9</td>
<td>91,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Д : Д₁</td>
<td>1000000</td>
<td>5000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пл : Пл₁</td>
<td>19000</td>
<td>59900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скорости</td>
<td>2590</td>
<td>3440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Разрежение</td>
<td>671</td>
<td>1163</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
37 составим таблицу:

<table>
<thead>
<tr>
<th></th>
<th>0,5</th>
<th>1,0</th>
<th>1,5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,33</td>
<td>1,64</td>
<td>1,92</td>
<td>2,19</td>
<td>2,69</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>277</td>
<td>313</td>
<td>339</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>4,71</td>
<td>7,67</td>
<td>9,80</td>
<td>11,5</td>
<td>14,1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,53</td>
<td>8,70</td>
<td>16,3</td>
<td>26,9</td>
<td>43,9</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>537</td>
<td>605</td>
<td>687</td>
<td>759</td>
<td></td>
</tr>
<tr>
<td>24,9</td>
<td>28,8</td>
<td>36,6</td>
<td>47,2</td>
<td>57,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5000</th>
<th>10000</th>
<th>50000</th>
<th>100000</th>
<th>5000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>435</td>
<td>711</td>
<td>2240</td>
<td>3670</td>
<td>11600</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1340</td>
<td>1780</td>
<td>1860</td>
<td>2470</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>180</td>
<td>317</td>
<td>346</td>
<td>610</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10000000</th>
<th>50000000</th>
<th>100000000</th>
<th>500000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>99800</td>
<td>309000</td>
<td>506000</td>
<td>1600000</td>
<td></td>
</tr>
<tr>
<td>3630</td>
<td>4780</td>
<td>5040</td>
<td>6640</td>
<td></td>
</tr>
<tr>
<td>1318</td>
<td>2285</td>
<td>2540</td>
<td>4400</td>
<td></td>
</tr>
</tbody>
</table>
81. В первой строке (Д) означает сверхдавление. Истинное давление = Д + Д1. Отношение истинных давлений будет на единицу больше.

Из таблицы видим, что до скорости в 955 метров сгущение от встречного потока недостаточно для работы моторов. Но после этого оно даже гораздо больше, чем нужно. Напр., при скорости в 1200 метров сгущение будет 435. т. е. оно будет в 3 раза больше, чем нужно, отчего работа моторов может увеличиться в 3 раза: было бы только горючее, да крепкие рабочие цилиндры. При скорости в 1860 метров, по той же таблице, сгущение будет в 11 раз сильнее. Значит с 1000 метров секундной скорости компрессоры окажутся излишними. Жаль, что температура, чрезчур велика. Так при 1 кило скорости она достигает (см. 70) 15000° Ц.

Впрочем, мы указали, что сгущение и температура должны быть много ниже.

89... Поговорим еще о формуллах сопротивления воздуха, нормально движущейся плоскости. Только при сек. скорости до 200 — 300 метров они могут считаться сносными (см. табл. 80). При больших же скоростях они дают преувеличенные давления, плотности и температуры (см. 72). Но, за неимением лучшего, приходится пользоваться и этими.

90... Снаряды в атмосфере едва ли будут приобретать секундную скорость больше одного килом. И при этом, по табл. 70, плотность окружающего пластинку воздуха увеличивается в
138 раз. Возможно ли экономное движение при этих условиях?

В том то и штука, что снаряды не имеют тупых концов, в особенности спереди. По таблице 80-й скорость в 300 метров уплотняет воздух перед пластинкой только в 2 раза. Следовательно, такая скорость вполне терпима для шаров: уплотнения среды перед ними почти не будет. Для плавного тела, вдвое более продолжатого чем шар, уже будет допустима скорость в 600 метров без заметного сгущения среды. Рассуждая так, составим таблицу.

Продолговатость тел, или отношение длины их к поперечнику.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>8</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
</table>

Допустимая экономная скорость в секунду Километры.

| | 0,3 | 0,6 | 0,9 | 1,2 | 1,5 | 1,8 | 2,4 | 3 | 4,5 | 6 |

При этих скоростях заметного сгущения среды не будет, а потому не будет и увеличенного, непомерного расходования энергии, при движении птицеподобного снаряда.

На больших высотах корма даже может оборваться плоскостью; но нам приходится летать и внизу. Поэтому плоский зад неудобен. Он неудобен также и в отношении конструктивном. Но часть его, где выходят жерла кони-
ческих труб, выбрасывающих продукты горения, поневоле будет плоской.

91... Обратимся опять к нашей таблице (70) с целью показать некоторую ее правдоподобность.

Метеоры, или космические камни, пролетая атмосферу, накаляются и испускают свет. Причина — в задержке движения атмосферой, так что весь минерал от этого нагревается: энергия движения переходит в теплоту. Еще причина — в сгущении перед камнем воздуха. Так как камень неправильной формы, то уплотнение и температура воздуха будут гораздо меньше, чем по таблице (70). Так, при сек. скорости в 5 кило среда уплотняется в 40000 раз, а температура ее доходит до 65000°. Принимая во внимание огромную скорость аэродинев (до 50 кило в секунду и более), это сгущение и температура должны бы оправдаться.

Но надо помнить, что такое сгущение и температура появляются не сразу, а постепенно: нужно время и длинный путь среды, чтобы достичь данных таблицы. Атмосфера же ограничена, а болиды, большей частью, пролетают в ней путь не больше 100 кило. На высоте ста км воздух поразительно разрежен. Ну, полагаю, в миллион раз. Если 100 кило этого воздуха сократить в 1 метр, то получится среда плотностью в 0,1 плотности атмосферы у уровня океана.
Понятно, что ни сгущения, ни температуры, указанной в таблице 70, не получится. Сопротивление воздуха будет так мало, что и самый метеор не накалится: он пролетит незаметным, темным.

Вот почему нужна определенная высота, чтобы метеор накалился и был виден. Граница падающих звезд 100—200 кило. Выше они не видны. Воздух там так мало болядами сгущается, что не светится.

Прибавка к явлению расширения газа.

Тут могут быть три крайних случая. 1) Когда газ, медленно изменяя объем, совершает внешнюю работу (без потери и поглощения тепла от внешней среды — во всех 3-х случаях). Этот случай мы разобрали. Пример: работа в паровой машине, где пар заменен газом или самий пар очень перегрет. 2) Когда газ свободно расширяется в пустоте без всяких преград. Тогда все его тепло переходит в движение самого газа и он охлаждается до абсолютного нуля. Примером может служить вылет газов в пустоте из труб реактивного двигателя 3) Когда газ расширяется в пустоте, но потом находит преграду в виде стенок закрытого сосуда. Тогда его температура сначала понижается и тепло переходит в его же движение. Но, встретив стенки, газ ударяется о них, останавливается и снова от того нагревается до той же температуры.
Результат: расширение, колебательное движение, остановка и прежняя температура.

Это известный физический опыт, когда сжатый газ из одного сосуда устремляется в другой—пустой, т. е. безгазный. На практике все три случая смешиваются, только в разной пропорции.

Замечание о «Новом Аэроплане».

Многие, сделанные мною в Новом Аэроплане выводы оказались сходными с выводами работы Корвин-Круковского (Америка, 29 г., узнал из весьма интересной книги проф. Н. А. Рынина: «Суперавация и Суперартilleryя»). Напр., что скорость аэроплана, пропорциональна квадратному корню из разрежения воздуха, потребная же энергия пропорциональна скорости самолета. Этот же вывод, как и другие, сделан мною еще в 1895 г. в забытом даже мною труде „Аэроплан“, напечатанном в журнале „Наука и жизнь“ (см. параграф 83 и другие).

К. Циолковский.
Приветствия, пожелания, критика, вопросы и отзывы.

Богатства вселенной. 1920 г. Поч. академик СССР. О. Д. Х.

... В этой книге я нашел много интересных данных...

Монизм. II н. 29 г. Инженер и писатель В. В. Рюмин.

... как я рад, что вы, оставаясь чистым материалистом, пришли к тем же выводам, к которым и я в свое время пришел (с другой точки зрения)...

Воля вселенной. II н. 29 г. Астроном и писатель Ю. Х.

... Вернувшись в Москву... нашел ваши... работы... чтение их доставило мне величайшее удовлетворение, в особенности, когда я познакомился с вашими гениальными соображениями о "высших" (собственно, неизвестных науке) "силах"... Люди, которые все непонятные ими явления относят к фантастической области, делаются... досадную ошибку так часто повторяющую в истории...

Далее автор в очень интересном письме излагает свои натурализм взгляды, органич. мир, как на целое и совершенное (георгена и
на проявление жизни одновременно с ее разрушением (синтанализ).

Металлический дирижабль.

„Office Appliances“ (Чикаго, Ноябрь 1929 г. стр. 66).

... Изобретатель новой пишущей машины многосторонен. Мы не раз ссылались на пишущую машину, изобретенную... Циолковским.

... Мы также обращали внимание читателей на работу... Циолковского в области космических ракет (с 1903 г.).

Теперь, благодаря любезности нашего друга, И. П. Менделеева (предложившего весьма приемлемый новый календарь), мы получили от него описание изобретенного... Циолковским металлического дирижабля (в 1892 г.)...

Книжка, иллюстрированная чертежами, особенно интересна в виду сходства дирижабля... Циолковского с американским воздушным кораблем того же типа, который совершил недавно первый удачный полет.

Космическая ракета. 9-го окт. 29 г. Крейн.

... Чтобы хотя немного утолить интерес студенчества к проблеме космического полета, мне пришлось написать статью... в нашем печатном органе... я использовал некоторые выкладки из ваших „Исследований“...

В настоящее время журнал «Физика и Производство» (Изд. Политехн. Инст) предложил
мне написать статью... Мне думается, что... обязанность людей, занимающихся... этим вопросом, пропагандировать эти идеи везде, где только возможно... от имени товарищей вам пламенный привет и наказ еще столь же долго и продуктивно работать.

Ракета Е. В. Л. Тифлис... 11 июля 29 г.... здесь образовался кружок звездоплавания...

Современное состояние земли. Инженер В. В. К.... она (книга) написана и составлена гораздо интереснее и полнее, чем имеющиеся у меня... занимаюсь разработкой каких-то изобретений...

Натурфилософия. 10 ин. 29 г. Астроном Н. С.... в последней (книге) вы говорите о старости, как о времени угасания интеллекта. Но ваши труды, ваши книги — лучший аргумент против этого. В нашем небольшом кругу одесских мироведов они всегда будут мысль и читаться с интересом.

Тоже. 8 мая 29 г. Астроном и писатель Л. Л. А.... Трудно было бы придумать лучший подарок, как получение... ваших исключительно интересных трудов...

Сопротивление воздуха. 23 н. 29 г. Профessor Н. С. В.... В этом отношении особо ценной идеей я считаю вашу работу о движении поездов по земле... некоторые конструкции, разработанные мною, заставляют меня думать, что идеи скорого поезда могут здесь пригодиться... оттиск моей статьи посылаю вам...
желаю успеха и широкого распространения ваших идей...

Окт. 29 г. В Английских газетах напечатано сообщение московск. корреспондента о его беседе с проф. В. П. Ветчинкиным. Корреспондент делает такое заключение: мечты о межпланетных сообщениях давно тревожат воображение русских ученых. Еще в 1913 г. появился первый в этой области научно-обработанный труд... Циолковского (это второй труд, первый появился в 1903 г.). Он жив в настоящее время и продолжает работать над осуществлением своей мечты.

За последнее время более дюжины серьезных умов работает в СССР над этим вопросом. Несколько лет тому назад группа молодых студентов образовала даже особое общество межплан. сообщений в Москве. Ими основана также специальная библиотека с литературой и различными проектами по этому увлекательному вопросу.

Астроном М. С. Э. 19 апр. 29 г. ... с тех пор я убежден в возможности и огромном космическом значении вселенского бытия земного человечества.

В последнее время мне пришлось прочесть много лекций о межплан. сообщениях... Сейчас в Ленингр. есть Кружок Межпл. Сообщ. при Лен. Инст. Путей Сообщения... После моей лекции в Лен. Университете, там возникла мысль
о создании такой же организации в университете...

О ваших работах в СССР знают, я думаю, все межпланетчики. Заграницей также, в основном, осведомлены через Шершевского и других. Все же основной задачей будущего всесоюзного объединения является издание ваших и других оригинал работ на иностран. языках, а также издание полного собрания ваших сочинений на русском языке, так как труды ваши почти невозможно достать для изучения и в виду их огромного интереса, вообще...

... Мне также интересны ваши труды по астрономии и философии...

3. Х. Харкков. 30 н. 29 г.

Ваш моноизм представляет собою изумительное радостное, бодрящее, глубоко-этичное и красивое учение.

Мысль о всеединстве сущего, мысль о том, что весь космос есть единый организм, не может не придавать человеку новых сил, с помощью которых он может ускорить приближение того счастливого времени, когда Земля приобщится к радостной жизни, царящей почти во всей вселенной.

Мысль о единстве — мысль старая, ... но вы первый доказываете эту идею научно. Правда и Спенсер в основу своих выводов положил данные науки, но вы в своих рассуждениях аб-
солютно самостоятельны и идете своей непроворенной и, как мне кажется, верной дорогой.

Вот почему ваши работы имеют сугубый интерес...

Затем автор письма задает два вопроса и прибавляет: я уверен, что вы разъясните эти неясные для меня места и, тем самым, дадите мне возможность понять вашу гениальную мысль во всей ее полноте... Автор сомневается в существовании причины космоса. Мой ответ: это только гипотеза. Научных доказательств существования причины у меня нет.

Второй вопрос: жизнь характеризуется сложностью органической материи. Где ее нет, там нет и жизни (или чувства). Мой ответ: условно это так. Но границ между "смертью" и жизнью найти нельзя... атом водорода, тяжелые атомы элементов, составленных из него, молекулы простые, молекулы сложные, молекулы клеточек, самые клеточники, организмы простые, организмы средние, высшие и т. д. все это только разные этапы жизни и чувства. Приведенный ряд не имеет ни начала, ни конца, границ между его членами нет. Они могут быть только условными и потому противоречивы. Разница количественная. Качественной она может быть названа только условно. Какова разница между единицей и миллиарном, такова и разница между жизнью и ощущением, какой нибудь бактерии и человека.
Апр. 29 г. Г.В.П. математик.

... Вопросом расчета вашего проекта я очень интересуюсь, тем более, что у нас в Лен. Гос. Университете открылся кружок по изучению межпланетного сообщения...

15 апр. 29 г. Астроном Л.Л.А.

... я надеюсь, что вы уже получили номер „Международной Биокосмической Ассоциации“ (Франция), которая избрала вас своим членом...

... Кстати, привожу выписку о ваших трудах из журнала „Астрономия“ (Франция).

16 апр. 29 г. А.П.Р.

... Я пишу к вам, как к человеку, посвятившему почти всю жизнь проблеме межпланетных сообщений, авторитетному ученому, давшему много ценных исследований в этой области...

Многие из нас, студентов, пришли в ВУЗ с тайной мечтой вооружиться знаниями и технически осуществить идею межпланетного полета... принцип реактивного движения реально встал перед современной техникой, как технически разрешимая задача..., этот вопрос приобретает не только военное, но и экономическое и политическое значение в плане социалистического строительства...

В нашем Университете, по инициативе студентов механического цикла матем. отделения физмата, организовался аэро-гидродинамический
кружок... Нас поддержала группа научных работников — профессоров: А. С., Г. К., Н. Р., инженер В. Д., ассистент Л, М.

... Ц. С. Осоавиахима предлагает студенчеству и научным силам физмата организовать научно-исследовательскую и опытную работу по разработке вопросов реактивного движения. Правление кружка поручило мне организовать и учесть заинтересованные научные силы. На этой неделе состоится заседание представителей (профессоров и студентов) от секций научных кружков физмата.

Прошу указать литературу по внешней баллистике и исследованию явлений, возникающих при движении снаряда с большой скоростью в воздухе. (Я — Циолковский печатаю здесь эту работу). Ведь современная аэрогидродинамика слишком элементарна для применения к ракетам, движущимся с громадной скоростью. Нам придется создавать целую науку, так как в этом вопросе придется считаться с сжимаемостью воздуха и его плотностью. Я беру на себя смелость заявить, что ваша работа, и работа всех, кто стремился осуществить тысячелетнюю мечту, находит благодарную почву и будет развернута. Она нам — неоценимая помощь.

28 мая 29 г. С. Ф. Г.

... Ваш монизм произвел на меня, молодого, колоссальное впечатление. В нем чувствуется итог работы многих десятков лет. Мне прихо-
дилось много спорить относительно вашего мо-
низма, отстаивать его. Собственно говоря, он
стоит сам за себя.

16 июля 29 г. Париж. инженер и автор мно-
гих замечательных работ по лингвистике
и математике. Я И.Л.

Благодарю за ваши брошюры. Они меня так
заинтересовали, что, погрузившись в чтение,
y до сих пор не удосужился известить вас
о получении....

... посылаю вам от себя экземпляр моих
"Принципов" вместе с некоторыми другими
брошюрами...

... До сих пор я познакомился только с
частью ваших брошюр...

... Очевидно, что между нами много общего.
Оба мы любим мечтать и философствовать о
далеком будущем. Оба мы верим, что оно по
красоте своей превзойдет всякое воображение.
Оба мы думаем, что вообще есть для чего жить.
Принимаем, что жизнь имеет глубокий смысл.
И что все наше спасение в точном знании и в
технических усовершенствованиях всякого рода...

... Вы являетесь автором интересных технич.
изобретений...

... Я еще не читал теории вашей ракеты, но
мы уже знаем, что идея эта признана физиками.
Что касается желез. аэростата, то тут вы
тоже имеете идею очень дельную, хотя и не
разработанную в чертеже...
Конечно, дело не в этих пустяках, а в самой идее, которая великолепна... Обновление алфавита необходимо и желательно.

... Но для этого нужно постановление всенародного конгресса художников, граверов и словолитчиков. Пока об этом никто еще не подумал, ибо еще существует множество других более крупных и важных проблем.

... Интересна и очень смела ваша идея о сверхэфире. Я против нее не возражаю, ибо это здесь ничто иное, как приложение математических бесконечностей различных порядков.

На стр. 27 (Монизм) вы говорите, что учение ваше ни мистицизм, ни спиритизм, ни оккультизм, ни теософия, ни религия; я согласен и здесь с вами. Ибо это то, что я называю точною метафизикой: приложение математического способа мышления к вопросам, стоящим вне непосредственного опыта.

... Вы же обладаете тем, что скромно называется искрой божьей. Вы принадлежите к разряду звезд, обладающих собственным светом...

... Вы поэт в области познания. Я вас поздравляю с этим высоким званием. Я любуюсь блеском ваших идей и сравниваю их с блеском моих собственных...

... Посылаю вам мой привет, привет от света свету!
Июль 29 г. Н. А. Б.

... пришлите мне ваше сочинение, которое подтверждало бы или отрицало существование совершенной творческой идеи беспредельной вселенной.

... не для праздного любопытства обращаюсь к вам.

... считаю себя счастливым уже тем, что пишу вам, что могу вам заявить о моем уважении к вашим одиноким научным трудам и искренне пожелать вам еще на многие годы хранить юношескую бодрость вашей творческой мысли.

Ноябрь 29 г. Союз живой вселенной И. Е. (Франция).

... Сообщая о получении ваших книжек... Я только что перевел некоторые главы... и поместил их в № 13 Жизни космоса.

Я очень был желал иметь для нашего журнала вашу статью по звездоплаванию... На эту важную тему мало обращают внимания, но она очень интересует наш кружок...

... Сейчас получены другие ваши брошюры. Не сделаете ли сами их перевод хоть на эсперанто-для всеобщего распространения...

Авг. 29 г. Д-р Социологии и истории. А. А. Ч.

... И в этих работах (Растение, Воля, Общественная организация) вы оказались сме- лым, независимым и оригинальным мыслителем.
Удивительно, сколько дерзновенных и гениальных идей приходит вам в голову. Буду ждать дальнейших плодов вашего творчества...

Москва, 11 м., 29 г.

... Я очень интересуюсь вашими работами по исследованию космических полетов и вообще всего, что связано с очень большими скоростями, т. к. в недалеком будущем хочу применить ракетный принцип к одной из машин, разработку и постройку которой я веду совместно с другим инженером Н. И. К...

Не задаваясь пока конструированием ракет для полета на больших высотах, я хотел бы проработать тип двигателя, могущего быть примененным для наших обычных способов передвижения на суше, воздухе и воде, как наприм., автомобили, самолеты и глиссеры... Н. К. С.

Затем следует ряд вопросов. На них я дал уже ответ в моих книжках. К.Ц.

Сент. 29 г. Е. Л. ... получил в исправности... и приступил к распространению, насколько не мешает летнее время (проф. раз'ехались). Дал большую статью в прессу... на космическую тему. На днях думаю составить вашу биографию для журнала... (орган инженер. и техников). Не-достает ваших фотографий...

Дек. 29 г. Инжен. Б.

... Чрезвычайно интересуюсь проблемой междупланетных сообщений, я, к сожалению, до
сих пор не имел возможности познакомиться с серьезными трудами в этой области, кроме по-
пулярных статей в различных журналах. ...

... Буду чрезвычайно признателен, если вы не откажете сообщить мне, возможно ли по-
получить ваши труды... По образованию я ин-
женер механик, недавно кончил, так что слож-
ность вопроса меня не пугает.

Июнь 29 г. Н. В. Ю. из журнала Культура...

В стона

... Циолковский дал полный алфавит для всех народов (26 букв)...

Июнь 29 г. А. С. К.

... Вчера я прочел в „Рабочей Москве“ статью о вас и ваших достижениях за всю свою долю полезную жизнь. До этой статьи я слы-
хал о вас мельком, но подробно знать о вас я не мог, ибо ведь наша страна так велика и
имеет много великих людей. Но они узнаются только тогда, когда какой либо из журналис-
тов дает свое интервью в печати.... Цель моего письма к вам есть искреннее желание привет-
ствовать вас и свою радость за то, что у нас есть великие люди, способные вершить чудеса. ...

Сент. 29 г. И. Б. П. (учитель физики и математики).

... Начав читать одну (книгу), я читал их запоем, как самый захватывающий роман. Прав-
да, по существу самой идеи междузвездных тем,
в них ничего для меня не было нового. Еще
пробуждающимся юношей, когда мне было 17 лет, познакомившись самоучкой с прекраснейшей из наук — астрономией, я уже уносился мыслью в глубину межзвездного пространства. Это были, конечно, только грёзы юноши, начавшего мыслить...

... Когда я, в (1902—1903 г. г.), носил мыслью по межзвездному пространству, стремясь постигнуть тайны мироздания, вы в это время дали миру точный математический расчет, каким образом человек может реально унести в глубь мирового пространства и реэально проникнуть в тайны этого пространства и рассеянных в нем мировых тел. Красивую мечту, фантастическую грёzu мыслящих людей вы первый поставили на твердую реальную почву математических формул и технических расчетов. Вот почему ваши книги, подчас сухие, подчас даже еще недоступные мне... я читал с захватывающим интересом, почти не отрываясь. Что-то близкое, родное сквозит в каждой вашей статейке, в каждой вашей мысли...

Затем автор выражает свое недоумение о существовании причины космоса. Повторяю, у меня нет на то научных доказательств.

Май 29 г. Берлин. А. Б. Шершевский (молодой русский ученый, работающий с проф. Г. Обертом).

Получено очень длинное и крайне интересное письмо, содержание которого не считаю
себя в праве передавать. А. В. заканчивает письмо так. Проф. Оберт и тем более я надеемся, что вы доживете до великого дня полета в мировое пространство первой ракеты с людьми... А вы-то писали в 1903 г. Филиппову: „пройдут еще, вероятно, сотни лет“ и т. д. Какие уже там сотни лет, когда сами доживете..!

Вы засветили огонь и указали путь к звездам, и мы идем по этому яркому пути...

Я, Циолковский, вздохнув, прибавлю к этому: без увлечения нельзя итти к великой цели. Увлечение поддерживает нашу энергию.

Берлин. 4 дек. 29 г. А. Б. Шершевский. (ассистент проф. Г. Оберта):

... Благодарю за Ваши новые труды. Я сейчас ассистент у проф. Г. Оберта. С группой молодых инженеров мы строим около Берлина первую в мире ракету с жидким топливом. Фильмовое общество... дало средства на первые опыты и постройку ракеты. Работу начали в июле. Работаем все здорово:... с 8 ч. утра до 10 ч. вечера, порой. Одна опытная установка взорвалась, дорогому Оберту в лицо попала:... чутъ глаза не потерял, а мне дыру в правой ноге прошило. (См. мои Космические поезда, стр. 8). ... Во всяком случае уже в октябре с. г. реактивный двигатель (бензин с оживленным кислородом) (см. мою Космическую ракету, стр. 2)... работал на правильном об'емном отношении 1:3,1 (см. там же, стр. 2). Подача
топлива происходила под давлением до 10 атм. (обычно 5 атм.) через центробежные форсунки (поршневые насосы имеют указанные мною в Косм. ракете преимущества). Месца 2 тому назад начали строить, так называемую, „малую ракету“. Махина эта длиной в 2 м. Сперва хотели взять топливом бензин и охаженный кислород. Потом Оберт предложил взамен бен- зина охаженный метан (CH₄), с уд. весом в 0,46 (в жидкому виде при—160°Ц.). Ну и возня с эти- ми сжиженными газами. Мне, по недосмотру молодого рабочего, эта дрянь попала в рот: охаженного кислорода попил! Хорошо, что в живот не пошло, а то лежал бы месяц в уни- верситетской клинике с язвой в желудке.. Вяз- кость у сжиженных газов очень незначительная и транспорт их одно удовольствие! У нас уже три сосуда Дьюара приказали долго жить (один малый в 2 литра, 2 больших по 5 литров), да с каким треском лопнули! Теперь у нас новые дьюаровские сосуды, всецело металлические,— лопнуть не могут.

Что касается трудностей проблемы, то на то и трудности, чтоб их одолевать! А то скуч- но бы стало, если бы все как по маслу шло. Трудности совсем уже не такие страшные, как Вы в „Ракетных поездах“ пишете. (стр. 8). Конечно, пока-что, мы о космической ракете лишь мечтаем. Наша первая цель—создание метеорологической ракеты.
... Теперь после наших “мук” с жидким О₃, мы применяем одно эндогенное соединение кислорода (жидкое уже при комнатной температуре). Этим все манипуляции очень облегчаются (вероятно, указанный мною в Косм. Ракете азотный ангидрид N₂O₅. Он плавится уже при малом тепле). Обе жидкости вливаются в баки, как в мотоцикл, мотор (то-есть реакт. двигатель) запускается и ракета работает. И работает на славу.

А как я рад, что вы... дожили до осуществления вашей и нашей мечты—и сказать трудно! Вот видите—в этот раз даже и вы ошиблись! Вы предполагали и писали, что начнут такие машины строить лет через 100—200—ан машина уж построена! (я говорил о космических полетах. Но, конечно, я не гарантирован от ошибок). Вероятно—при современном темпе науки и техники вы увидите еще и первый звездолет. Мы требуем лишь денег и времени— и построим такую машину. Действительно, проблема стала почти финансовой. Временные неудачи на нас действуют в обратном смысле: лишь увеличивают энергию. Стиснул зубы, выругался и снова за работу.

В газетах я уже давно не писал: приятнее работать над ракетой, чем писать о ней. Я все же работаю над большим трудом: “Механика ракетного полета”.

... Вы указали путь к звездам. Наше дело пойти по этому пути. Мы пойдем и победим.
Залог к этому имеем в быстром развитии авиации и техники вообще. Уже теперь у нас огромный опыт и вторая ракета будет содержать меньше ошибок.

... В заключение очень прошу вас выслать мне еще один экземпляр вашего труда "Сопротивление воздуха и скорый поезд". Нам этот труд очень необходим. Я хочу его в свободное от постройки ракеты время перевести.

... Сердечный привет от Оберта и наших сотрудников.

12 д. 29 г. Мой ответ А. Б. Шершевскому.

Вы идете, как мне кажется, по верному пути. Это доставляет мне большую радость и я искренне поздравляю вас с серьезным успехом и продвижением вперед.

Без последователей, работающих теоретически и практически и мои труды оказались бы бесплодны. Поэтому вы заслуживаете особенной признательности людей.

Все же трудности так громадны, что требуют новых гениальных и несокрушимых работников. Естественно, что ваши титанические усилия и жертвы истощат вас. Может быть этого не будет и вы увенчаете дело полным достижением. Но я сужу исторически.

Во всяком случае ваши заслуги останутся драгоценны.

Есть, однако, еще второй путь для достижения цели: это изменение конструкции аэро-
плана и его моторов (см. мои: Ракетные поезда и новый аэроплан). Вы идете первым путем (Косм. ракета). Оба пути ведут в Рим, т. е. приведут к звездолету.

Мой горячий привет и пожелания успеха всем честным и талантливым труженикам звездоплавания, в особенности вашей группе во главе с проф. Герм. Обертом.

Будущее Земли 1928 г. Д-р социологии и истории А. Л. Ч.

... Сначала я находил эти идеи очень странными, но чем больше углублялся в чтение, тем становился серьезнее и в конце концов пришел к выводу, что все это так и будет, как вы предвидите...

О том-же. (1929 г. Париж). Редактор журнала, Д. С.

... Я собираюсь поместить статью о вашей деятельности. ... Желал-бы иметь несколько ваших строк к этой статье и вашу фотокарточку. ... Разрешите-ли перевести на эсперанто вашу брошюру: Будущее Земли...

Всех моих корреспондентов благодарю за приветствия и сочувствия, разумную критику и вопросы. К сожалению, мои слабые силы и работы не всегда позволяют мне откликнуться.

К. Циолковский
К.Э.Циолковский

Космическая философия

Совокупность идей, гипотез, тезисов, составивших содержание философских сочинений К.Э.Циолковского, сам Константин Эдуардович назвал «Космической философией». Её центральным элементом стало смоделированное с помощью научных методов учение о смысле жизни и постижении его в процессе реализации нравственной практики.

О важности этих исследований для человечества говорит утверждение К.Э.Циолковского о том, что теорию ракетостроения он разработал лишь как приложение к своим философским изысканиям.

Учёным написано множество философских работ, которые малоизвестны не только широкому читателю, но и специалистам ввиду их многолетнего замалчивания. Эти книги – попытка прорвать «заговор молчания» вокруг философии русского космического провидца.

Новое мышление невозможно без поиска смысла жизни в единстве населённого космоса.

Обращаясь к своим читателям, К.Э.Циолковский говорит:

«Постараюсь восстановить то, что в сонме тысячелетий утеряно человечеством, отыскать оброненный им философский камень».

... «Будьте внимательны, напрягите все силы, чтобы усвоить и понять излагаемое.»

... «За напряжение, за внимание вы будете вознаграждены, не скажу сторицею, это чересчур слабо, но безмерно. Нет слов для выражения тех благ, которые вы получите за свой труд. Нет меры для этих благ. Эта мера есть бесконечность».

К. Э. Циолковский
«Живая вселенная»
1923 г.

© К.Э.Циолковский, 1857-1935
© ООО «Центр информационной безопасности», 2013
Научно-популярное издание

Константин Эдуардович Циолковский

«Космическая философия»
www.tsiolkovsky.org

Руководитель проекта Николай Красноступ
Дизайн и верстка Татьяна Колпакова, Евгений Продайко
Вебсайт, хостинг Евгений Хромых
CMS Евгений Дужик
Перевод Александра Гаманенко

Приглашаем всех принять участие в данном проекте!

Если вы хотите и можете оказать содействие данному проекту, свяжитесь с нами по email support@krasnostup.com