Изслѣдованіе мировыхъ пространствъ реактивными приборами
(дополненіе къ I и II части труда того-же названія).

Схема „ракеты“.

цѣна 15 коп.

Калуга, Коровинская, д. № 61, К. Э. Циолковскому.

Изданіе и Совѣтвенность автора.
Интересующиеся реактивными приборами для заатмосферных путешествий и желающие принять какое-либо участие в моих трудах, продолжить мое дело, сделать ему оценку и вообще двигать его вперед таак или иначе, — должны изучить мои труды, которые теперь трудно найти; даже у меня только один экземпляр. Поэтому мне хотелось бы издать в полном виде и с дополнениями "Изследование мировых пространств реактивными приборами".

Пусть желающие приобрести эту работу сообщают свои адреса. Если их наберется достаточно, то я сдам издание с расчетом, чтобы каждый экземпляр (6—7 печатных листов, или больше 100 страниц) не обошелся дороже рубля.

Предупреждаю, что это издание весьма серьезно и будет содержать массу формул, вычислений и таблиц.

Для сближения с людьми сочувствующими моим трудам, сообщаю им мой адрес:

Калуга, Коровинская, 61,
К. Э. Циолковскому.
Схема "ракеты".

Изслѣдованіе міровых пространствъ реактивными приборами.

(Дополненіе къ первой и второй части труда того-же названія).

К. Циолковскаго.

Стремленіе проникнуть за атмосферу подобно желанію изучить морское дно, внутренность земной коры, открыть новую страну, изобрѣсти подводную лодку, летать по воздуху, улучшить жизнь, излѣчить болѣзни, изучить небо.

Когда-то все эти желанія были дерзновенны и карались или осуждались многими. Но, конечно, напрасно, ибо эти желанія дали добрые плоды людямъ.

Давно доказано, что одинъ и тотъ же солнце освѣщаетъ миллионы планетъ, имѣющихъ одинъ и тотъ же материальный составъ, т. е. тѣ же, приблизительно, земли, руды, металлы, жидкости и атмосферы.

Всѣ миллионы солнца подобны между собою и есть только громадныя, не успѣвшіе еще остывть планеты-земли.

Все это—материальный міръ и ничто не мѣшаетъ намъ его изучать, проникать въ него и имъ пользоваться, какъ пользуемся мы благами Земли. Достигать ихъ есть удѣль человѣка.

Но есть другое небо—метафизическое, высшее, мысленное, въ какое мы проникаемъ, когда потеряемъ эту тѣсенную оболочку.

Есть другой міръ—духовный, который открывается намъ, когда мы кончимъ нашъ жизненный путь; этотъ міръ не доступенъ нашимъ чувствамъ, но онъ возникнетъ передъ нами въ свое время, когда мы представимъ передъ Нимъ. Сонъ нашей жизни прервется, протрываемъ мы свои духовные очи и увидимъ то, о чемъ сейчасъ не думаемъ.

Пока же мы живы, пока продолжается нашъ крѣпиій сонъ, мы не можемъ не думать о земномъ, о матеріальномъ, каково видимое небо.
Безучисленная планеты— Земли есть острова безграничного эфирного океана. Человек занимает один из них. Но почему он не может пользоваться и другими, а также и могуществом безучисленных солнц?

Ему угодно, чтобы все Его творение было на благо человечку и чтобы сон, в котором пребывает человечество, имело значение, подобно тому как имел значение обыкновенный наш пчный сон, укрывающий душу и тело. Пусть же и сон жизни будет светель и радость.

* * *

Первая часть этого труда, помянутая в 5-ой книжке „Научного Обозрения“ за 1903 г., кажется не обратила внимания, если не считать изобретателей, примыкающих мои идеи в военном дель в Швеции в 1905 г. и в Св. Америк в 1908 г.

В 1911—12 г., в „Вестник Воздухоплавании“, я поместил развитие этих идей вместе с резюме I части.

Насколько мне известно, больше всего на эту работу обратила внимание инж. техн. В. В. Рюмин, редактор журнала „Электричество и Жизнь“.

В № 36 журнала „Природа и Люди“ за 1912 г. помещена была его статья: „На ракет в мировое пространство“.

Привожу из неё то, что мне кажется наиболее полезным для моего дель.

Вот что он, между прочим, пишет.

„…Циолковский, в солнечной подкрывленной математическими формулами научной работе дал обоснование действительной возможности межпланетных сношений. В журнале „Вестник Воздухоплавания“ вот уже 2-й год печатается выдающийся по интересу статья Циолковского: „Исследование мировых пространств реактивными приборами“. Сухое заглавие, столбцы формул, масса численных данных,— но какая сквозная мысль иллюстрирована этими формулами и цифрами! Человека только вчера оторвавшийся от поверхности земли, делящийся ещё первые попытки установления воздушных путей сообщения, уже поднял глаза к мерцающим звёздам, и гордая, смелая мысль озарила его мозг: „туда, все выше и выше, в мировое пространство!“.

„Пользуясь любезным разрешением самого К. Э. Циолковского, мы хотели бы популяризировать его оригинальную, выдающуюся по своей смелости, идею, сделать ее доступной широким кругам читателей. Ракета— вот тот эпипаз, который единственно возможен для путника, собирающего отправиться в мировое пространство, желающего отдалиться не только от поверхности земли, но и преодолеть силу ее притяжения. Повал, нисколько до сих пор не высказывался, по и единственно взволнавший мысль. Ни пушка Жюль-Верна, ни уничтожающий притяжение „кеворит“,
придуманный (увы только в романе) Уальсом, не в состоянии решить задачу установления сношений между телами нашей солнечной системы. Только реактивный прибор может и предложить притяжение земли, и регулировать скорость движения, и изменить направление в пространстве, и притом—быть управляемым изнутри. Будущие межпланетные путешественники—не пассажиры пассажиры пущенного ядра, а в полном смысле слова автомобилисты мирового пространства...“

“...Увеличите размеры ракеты до размеров вагона, устройте так, чтобы взрывы газообразующего вещества регулировались по силе и по направлению выхода,—и у вас в руках вирное средство для полета в межпланетном пространстве. Всякий другой двигатель—колесный, гребной, реактивный—требует присутствия твердой опоры поверхности или окружающей движущегося тело жидкой или газообразной среды; лишь реактивный прибор может не только перемещаться, но и изменить свою скорость и направление в пространстве эфира“.

“Для техники выработать конструкцию такого прибора,—по это уже, такъ сказали, второстепенное дело, важен первый Циолковский принцип возможности осуществления аппарата для завоевания межпланетных сферъ. Принцип этотъ имъ строго обосновать математическими выводами. Начальная скорость, которую долженъ иметь снарядъ, чтобы преодолеть земное притяжение, правда, поразительно велика въ сравненіи съ достигнутыми до сихъ поръ человѣкомъ,—не менѣе 11 170 метровъ въ секунду, т. е. свыше 10 верстъ“.

“Возможно ли достичь такой скорости? Невозможно сегодня, по, быть можетъ, станетъ возможнымъ завтра!...“

“При увеличении скорости до 11 километровъ въ секунду человѣкъ, не припивший особой мѣры предосторожности, будетъ убитъ на мѣстѣ, расширенномъ о заднюю стѣнку своего воздушного экипажа. Но инерция его тѣло еще будетъ оставаться въ покой въ моментъ, когда снарядъ взойдетъ ввысь,—и дѣйствіе будетъ аналогично тому, какъ бы это снарядъ ударилъ въ спокойно стоящаго человѣка. Но реактивный приборъ и не нуждается въ развитіи максимальной скорости въ первый же моментъ движенія,—она можетъ возрастать постепенно. Кромѣ того, погружение путешественника въ жидкую несжимаемую среду можетъ ослабить дѣйствіе инерціи и дать ему возможность безвредно перенести моментъ отдѣленія отъ земли“.

“Далѣе, въ полетъ пассажиру предстоитъ пріучиться къ невѣдомому на землѣ ощущенію отсутствія силы тяготѣнія“.

“Что касается обезпечатія путника кислородомъ для дыханія и пищевыми веществами, то это—вопросъ, почти не встрѣчающий затрудненій уже въ наше время. Втѣмъ, подъ рукой мирового путешественника будетъ без-
грацичный запас лучистой энергии в виде солнечного света, не затмевавшего на пол-суток толщей земного шара, как он привык на поверхности послѣдняго...

"Полное отсутствие силы тяжести в пути позволит выдвигать изъ стѣнь вагона родь закрытых стеклами оранжерей для выращивания растений, могущих служить эмигрантами на ихъ многочисленные пути изъ одной солнечной системы в другую."

"Что насаждаются коротких" перевозчикъ на ближайших планетах, то при нихъ всегда можно обезопасить себя провiantомъ на прямой и обратный путь...

...Пусть идея нашего талантливого соотечественника такъ и остается для человѣчества только идеей и никогда не будетъ приведена въ исполненіе,— одна мечта о ея осуществлении уже является завоеваніемъ человѣческой разумъ, какъ еще не бывало доньѣ. И я лично твердо вѣрую, что всѣ когда-нибудь настанетъ времена, когда люди,—быть можетъ, забывъ имя творца этой идеи,—понесутся въ громадныхъ реактивныхъ снарядахъ, и человѣкъ станетъ гражданиномъ всего безпрѣдѣльнаго мироваго пространства".

Привожу тутъ слова и инж. Б. Н. Воробьева, редактора Техники Воздухоплаванія (органъ VII отд. Имп. Русск. Техн. Общ.), который говоритъ въ "Современномъ Мирѣ" (1912 г.):

"Существуетъ до сихъ поръ еще мало разработанная отрасль воздухоплаванія при помощи реактивныхъ двигателей, т. е. по принципу полета ракеты, которая, какъ известно летитъ и въ безвоздушномъ пространствѣ. Этотъ родь воздухоплаванія, строго научный и отнюдь не являющийся фантазіей, позволитъ когда нибудь человѣку проплыть за предѣлы земной атмосферы, въ далекую область многочисленныхъ окружающихъ нашу планету небесныхъ мировъ. Она открываетъ передъ человѣческимъ творчествомъ широчайшее, положительно безконечные горизонты."

Я позволю себѣ поэтому закончить свою статью слѣдующими словами изъ полученаго мною письма старшаго русскаго работника по воздухоплаванію, изобрѣтателя Циолковскаго, который давно уже разработываетъ вопросъ о названномъ только что способѣ воздухоплаванія: человѣчество не остается вѣчно на Землѣ, но въ погонѣ за свѣтомъ и пространствомъ сначала робко проплынетъ за предѣлы атмосферы, а затѣмъ завоюетъ себѣ все околосолнечное пространство.*

Въ 1913 г. инженеръ Эсно Пельтри, изобрѣтатель аэроплана "Реалъ", предсѣдатель французскаго общества воздухоплавательной промышленности, сдѣлалъ докладъ о возможности непосредственныхъ междупланетныхъ пошленій. Онъ также призывалъ "Ракету" наиболѣе цѣлесообразнымъ приборомъ для этой цѣли (см. "Природа и Люди" № 4, 1914 г.). По поводу доклада Эсно Пельтри редакція журнала "Природа и Люди" дѣлаетъ тутъ же слѣдующее примѣчаніе.
Идея путешествовать в мировом пространстве в реактивном аппарате не нова: еще в 1891 г. русский ученый, К. Э. Циолковский подробно разработал ее, а в 1912 г. посвятил этому вопросу обстоятельную работу: «Изслѣдованіе мировыхъ пространствъ реагтивными приборами». Въ свое время мы познакомили читателей со смѣльнымъ проектомъ нашего соотечественника, на много опередившаго своихъ западныхъ собратѣй. И вотъ, не прошло и года, какъ къ тому-же вопросу начинаютъ подходить на Западъ съ практической стороны.

Прибавлю отъ себя, что несимпатичное мое право на приоритетъ начинается со времени опубликования моихъ работъ, т. е. съ 1903 года, или за 10 лѣть до доклада Эно Пельтри.

Наконецъ, 20-го ноября 1913 года, Я. И. Перельманъ, въ „Обществѣ Любителей Мировыхъ Путешествий“, сдалъ сообщеніе о возможности между-планетныхъ путешествій, не забывъ и моихъ трудовъ.

Краткое изложеніе этого сообщенія г. Перельманъ помѣстилъ въ „Современномъ Словѣ“ (см. 1-го декабря 1913 года), гдѣ, между прочимъ, пишетъ (полное сообщеніе напечатано въ „Свободномъ Словѣ“, № 1, 14 годѣ):

„Въ сторонѣ отъ всѣхъ фантастическихъ проектовъ стоитъ идея, высказанная нашимъ известнымъ теоретикомъ воздуховлажанія — К. Э. Циолковскимъ. Здесь передъ нами уже не измышленіе романтика, а научно разработанная и глубоко продуманная техническая идея, высказанная вполнѣ серьезно. К. Э. Циолковскій указываетъ на единственный реальный путь осуществления межпланетныхъ путешествій. Принципъ, на который опирается его проектъ — это давно известный, но еще почти не использованный технический принципъ реакціи, отдачи (проявляющая, напримѣръ, при стрѣльбѣ). На этомъ основано устройство ракетъ — и межпланетный дирижабль Циолковскаго, въ существѣ, ничто иное, какъ огромная ракета.“

Отчета ракета влетаетъ вверхъ? Ошибочно думать, что ракета летитъ, подобно пудѣ, или что она отталкивается отъ воздуха вытекающими изъ нея газами*. Въ томъ-то и дѣло, что полетъ ракеты нисколько не зависитъ отъ воздуха и вообще отъ окружающей среды. Газы, образующиеся при гореніи пороха въ трубѣ ракеты, стремительно вытекаютъ внизъ, — а сама ракета силою реакціи (отдачи) отбрасывается въ обратномъ направленіи, т. е. вверхъ. Въ абсолютной пустотѣ ракета бы влетѣла на еще большую высоту, такъ какъ воздухъ, вслѣдствіе тренія, только мѣшаетъ ея полету. Если вы вообразите себѣ ракету колосальныхъ размѣровъ, съ камерой для людей, могущихъ по желанію регулировать истеченіе газовъ — вы получите наглядное представление объ управляемомъ небеснымъ снарядѣ Циолковскаго.“

Преимущества такого снаряда очевидны. Во-первыхъ, онъ въ полномъ смыслѣ слова управляемъ, ибо, регулируя скорость и направленіе истеченія газовъ, пассажиры могутъ по желанію замѣнять быстроту и направленіе
своего движения. Во-вторых, паростанов скорости происходить здесь не внезапно (как въ лдр. Жюля Берна), а постепенно, но мѣрѣ истечения газовъ,—такъ что пассажирамъ не грозить опасность быть раздавленными собственными гюсамиъ."

"Цюлковский разрабатываетъ свой проектъ уже болѣе 20-ти лѣтъ. Правда, онъ еще неправдоподобно далекъ отъ практическаго осуществления, что не вышло даже въ конкретную форму, но принципъ указанъ совершенно правильно. Любопытно, что известный французский архитекторъ и инженеръ Эно Пельтри недавно выступилъ въ Паризѣ съ докладомъ о возможности достичь луны на аппаратѣ, основанномъ именно на этомъ принципѣ. Очевидно, идея реактивного прибора для межпланетныхъ путешествий въ наши дни, какъ говорить, "посится въ воздухъ."

"Главное и, пожалуй, даже единственное препятствие къ немедленному осуществлению реактивного небеснаго дрижабля—это отсутствие достаточно сильнаго взрывчатаго вещества. Мы еще не знаемъ источника, который при современномъ состоянии техники способенъ быть бы развитъ силу, достаточную для движения такой огромной ракеты. Но вспомнимъ, что въ такомъ же положеніи были всего четверть века тому назадъ первые піонеры авиаци: принципъ летанія былъ указанъ правильно, и остановка была лишь за достаточно могучимъ двигателемъ. Нѣтъ ничего невозможнаго въ томъ, что не сегодня-завтра будетъ найденъ необходимый источникъ энергіи—двигатель будущихъ небесныхъ дрижаблей. Тогда заманчивая мечта о достижении иныхъ мировъ, о путешествіи на луну, на Марсъ или Сатурнъ, превратится, наконецъ, въ реальную дѣйствительность. Воздухъ, необходимый для дыханія, нетрудно будетъ взять съ собои (въ видѣ хотя бы жидкаго кислорода), точно такъ же, какъ и аппараты для поглощенія выдыхаемой углекислоты. Точно также, конечно, вполнѣ мысленно снабдить небесныхъ путешественниковъ достаточнымъ запасомъ пищи, питья и т. п. Съ этой стороны едва ли могутъ представить серьезные препятствія для путешествій непримѣрные, на луну, а современномъ,—и на планеты."

"Итакъ, если намъ суждено когда-нибудь вступить въ непосредственное сообщеніе съ другими планетами, включить ихъ въ сферу своей добивающейся промышленности, быть можетъ, даже колонизовать иные миры, если астрономія превратится когда-нибудь въ "небесную географію и геологію",—словомъ, если земному человѣчеству суждено вступить въ новый "вселенскій" периодъ своей истории, то осуществится это, всего броятъ, при помощи исполненными ракетъ и вообще реактивныхъ приборовъ. Это единственное намѣтенное въ настоящее время практическое разрѣшеніе проблемъ меж-планетныхъ путешествій."
Я ищу поддержки моим стремлениям быть полезным, и вот почему привожу тут все мной известное, что может впоследствии облегчить моим трудам.

Тяжело работать в одиночку, многие годы, при неблагоприятных условиях и не видеть ни откуда просвета и содействия.

Из взял статей о "ракете" видно, что мы очень далеки от наших современными техническими средствами от того достижения требуемой скорости.

Здесь я хотел бы, в свою очередь, популяризовать свои мысли, сделать несколько к нам понимания и опровергнуть взгляд на "ракету", как на то чрезвычайно далекое от нас.

Вот и некоторые из теорем, доказанных мною ранее, здесь же я буду их только понять, если они несовместимы с ними.

Теорема 1. Пусть сила тяжести не уменьшается с удалением тела от планеты. Пусть это тело подняло на высоту, равную радиусу планеты; тогда оно совершит работу, равную той, которая необходима для полного отклонения силы тяжести планеты.

Для земли, напр., и тонны вещества эта работа равна 6.366.000 тонно-метров. Если снапать, как у Эссо Пельтри, рабочая 24 минут, в сечих согласован, то не трудно разрешить, что в секунду его двигатель должен давать "ракету" работу в 4.420 тонно-метров, или 58.800 лошадиных сил, а не 400.000, как разрешает Эссо Пельтри *).

У меня вопросение быстрее и продолжается только 110 сек. Таким образом, в секунду снарядь весом в тонну должен выделять 57.870 тонно-метров, что составит 771.600 лошадиных сил. Всего, конечно, скажу: возможно ли это?! Снарядь весом всего в тонну, или 61 пуды выделяет чуть не миллиона лошадиных сил!!

Самые легкие двигатели не выделяют в настоящее время на тонну (1.000 килом) своего веса не более 1.000 лош. сил.

Но дюло в том, что здесь речь идет не об обычных двигателях, а о снарядах, подобных пушеч.

Представьте себе пушку длиною в 10 метров, выбрасывающей снаряд в тонну весом, со скоростью 1 километра в секунду.

Это не далеко от действительности. Какова же работа, произведенная пушечным вещество и полученной ядром? Ничего легче, как разрешить, что она составляет около 50.000 тонно-метров. — и это в течение малой доли секунды. Средняя скорость ядра в пушке не менее 500 метр. в 1 сек. Следовательно, пространство в 10 метров ядро пробивает в 1/50 сек. Значит работа пушки в секунду составит 2.500.000 тонно-метров, или около 33.300.000 лошад. сил.

*) См. статью К. Е. Велеганина, "Природа и люди", № 4, 1914 г. Без комментариев, а тот, кто не согласен, тот ошибается Эсо Пельтри.
Отсюда видно, что полезная работа артиллерийского орудия в 566 раз больше, чем требует ракета Эсо Пельтри и в 43 раза больше, чем мой реактивный прибор.

Итак, в количественном отношении, пять ничего общего между реактивными спарядами и обычными моторами.

Теорема 2. В среде без тяжести окончательная скорость „ракеты“, при постоянном направлении взрывания, не зависит от силы и порядка взрывания, а только от количества взрываемого материала (по отношению к массе „ракеты“), его качества и устройства взрывчатой трубы.

Теорема 3. Если количество взрываемого материала равно массе „ракеты“, то почти половина работы взрываемого вещества передается ракете. Этому легко повреждать — стоить только вообразить два одинаковых по массе пары и между ними распяленную пружину. Она разделяется, при распяленном меж двумя шарами, поровну заключенную в пей рабоч.

Если, напр., имтье ядро с трубой и вырывающеюся изъ пей такую же массу водорода при нулевой температуре, то энергия водорода разделяется пополам, причем одна половина передается ядру. Скорость молекулы водорода, какой известно, составляет около двух километров в секунду. Поэтому ядро получит скорость около 1.410 метров в секунду. Во многих случаях скорость воды в волокне до 2 километров в секунду.

Послѣ этого уже не трудно повреждать моим расчетам, по которым выходит, что при химическом соединении водорода с кислородом, скорость полуобразованный молекулы воды, вырывающихся изъ неподвижной трубы составляетъ болѣе 5 километров в секунду; слѣдовательно, скорость, полученная подвижной трубой такой же массы, болѣе 3 1/2 километров в секунду. Действительно, если бы вся теплота горѣнія передавалась соединению, т. е. водлому пару, то температура его достигла бы 10,000° C. (если бы не было его расширенія); при этомъ скорость частицъ пара будетъ, приближительно, въ 6 разъ болѣе, чьмъ при нулѣ (+273° абсолют. темп.).

Скорость молекулы водяного пара при нулѣ, какъ известно, болѣе 1 километра въ секунду; слѣдовательно, при образованіи пары изъ кислорода и водорода развивается, благодаря химической реакціи, скорость до 6 километровъ въ секунду.

Наконецъ, только дѣлаю грубую и наглядную провѣрку моихъ прежнихъ вычислений.

Итакъ, когда масса гремучаго газа равна массѣ „ракеты“, то секундная скорость ея въ 3 1/2 километра весьма естественна и число это очень скромное.
Теорема 4. Когда масса ракеты плюс масса взрывчатых веществ, имеющихся при реактивном приборе, возрастает в геометрической прогрессии, то скорость "ракеты" увеличивается в прогрессии арифметической.

Этот закон выражим двумя рядами чисел:
mасса: 2, 4, 8, 16, 32, 64, 128...
sкор.: 1, 2, 3, 4, 5, 6, 7...

Положим, напр., что масса ракеты и взрывчатых веществ составляет 8.

Я отбросивая 4 единицы взрывчат веществ, но получая скорость, которую мы примем за единицу.

Затем я отбросивая 2 единицы взрывчат вещества и получаю еще единицу скорости; поконец отбросивая последнюю единицу массы взрывчатых веществ и получая еще единицу скорости; всего 3 единицы скорости.

Из этой теоремы видно, что скорость далеко не пропорциональна массе взрывчатого вещества; она растет весьма медленно но безпределно.

Есть наиболее выгодное относительное количество взрывчатых веществ, при котором их энергия используется лучше всего. Это число близко к 4.

По абсолютной скорости "ракеты" вестаки тем больше, чем запас взрывчатых веществ значительно. Вот запас этого материала и соответствующей секундной скорости в километрах:

1, 3, 7, 15, 31, 63, 127, 256... (Масса взрывчатого вещества).
3 1/2; 7; 10 1/2; 14; 17 1/2; 21; 24 1/2; 28... (Скорости).

Теорема 5. В среднем тяжести, напр., на земле, при вертикальном поднятии "ракеты", часть работы взрывчатых вещества пропадает—и тым большая часть, чем ближе давление вырываемыхся газов на ракету, к въсу посадки.

Если, напр., "ракета" со всем ее содержимым въсит тонну и давление взрывчатых веществ на снаряд тоже составляет тонну, то утилизация нет, или она равна нулю, т. е. взрывание безрезультатно, так как "ракета" стоит на одномъ месте и энергия ей не передается.

Вот почему в моих проектах давление на "ракету" и принимаю вь 10 разъ большимъ, чемъ въс снаряда со всёмъ въ немъ находящимся.

Это Полетти, принимая въс ракеты въ одну тонну (61 цудъ), на взрывчатых вещества откладывает одну треть, или 20 цудовъ. Если это ради, притомъ откладывают свою энергию въ миллионы разъ быстрье, чемъ это есть на самомъ дѣлѣ, то межпланетные полеты обеспечены.

Я самъ мечталъ о ради. По въ послѣднее время я произвелъ вычисления, которыя мнѣ показали, что если направить частицы (альфа и бета), выдѣляемымъ радіемъ, въ одну сторону, параллельнымъ пучкомъ, то всѣ его уменьшается, приближительно, на одну миллионную долю его собственного веса...
После этого я бросил мысль о радио. Велика открытия возможны, и мечты неожиданно могут осуществиться, но мнг бы хотели стоять, по возможности, на практической почве.

Эсно Пельтри вычислил, что 20 пудов гремучего газа могут передать «ракету» только 1/130 требуемой работы, необходимой для освоождения от силы тяжести.

Я вижу расчеты передаются даже меньшая часть, именно только 1/540. Причина не только в том, что относительное количество (1/s) взрывчатых веществ незначительно, но главным образом еще в том, что давление газов, на снаряд, у Эсно Пельтри принимается лишь на одну десятую превышающим его весь «ракету». Эта разница в 100 раз меньше, чьем какую принямо.

На основании последней теоремы (5) мы видели, что взрываем в среде тяжести может быть даже безрезультатным, если давление газов на прибор будет равно его весу.

Действительно, относительное количество взрывчатых веществ (1/s) у Эсно Пельтри далеко от наиболее благоприятного (4); поэтому, согласно моим таблицам, снаряд приобретает скорость не больше 1/2 килом. в секунду—и то при давлении газов, как у меня. Но так как у него это давление в 9 раз меньше, то уравлется в 10 раз меньше и скорость будет только около 0,5 килом. Для одоления же земной тяжести нужно иметь больше 11 килом. в секунду; следовательно, скорость должна быть в 22 раза большей, а энергия, потребная для этого, будет в 484 раза больше.

Опыт повторно, что ошибки, замеченные мною в доклад Эсно Пельтри, есть, впрочем, простые опечатки, как это часто бывает; но думаю, что небезопасно их исправить.

Успышное построение реактивного прибора и в моих глазах представляет громадный трудности и требует многолетней предварительной работы и теоретических и практических исследований, но все-таки эти трудности не так велики, чтобы ограничивался мечтами о радио и о несуществующих пока явлениях и тѣхах.

Можно ли забрать потребный запас взрывчатых веществ, превышающих весь <<ракету>> в десятки раз?

Представим себб, что половина удлиненной перетяг-образной <<ракеты>> заполнена жидкими свободно испаряющимися взрывчатыми веществами.

Эти вещества находятся под влиянием усиленной относительной тяжести, вследствие ускорения движения <<ракеты>> и потому стѣнки послѣдней испытывают отъ жидкостей давление большее, чьем при неподвижном положеніи ракеты на землѣ. Расчеты показывают, что при стальной материцѣ, при надежной (6) прочности, при <<ракета>> длинною в 10 метровъ и при тяжести, превышающей земную въ 5 разъ, весь взрывчатыхъ ве-
шестъ может быть в 50 раз больше въса „ракеты“ съ остальными содержимыми. И это при самомъ заурядномъ материалѣ и большомъ запасѣ прочности. Теорія также показываетъ, что, при увеличеніи размѣровъ „ракеты“, относительный запасъ взрывателей веществъ увеличивается и наоборотъ. Поэтому выгоднее давать „ракету“ возможно малые размѣры. 10 м. длины—величина вполнѣ достаточная.

Другой важный вопросъ—о температурѣ взрыхляющихся материаловъ.
Расчеты показываютъ, что при свободномъ (какъ въ нашей взрывной трубѣ) расширении продуктовъ соединенія гремучаго газа, наибольшая температура ихъ должна достигать 8.000° Цельсія.

Но въ практикѣ, въ горящемъ гремучемъ газѣ даже не слѣдится известе. Слѣдовательно, температура далеко не такъ высока. Причина въ явленіи диссоціаціи.

Когда водородъ и кислородъ начинаютъ химически соединяться, то температура настолько повышается, что препятствуетъ большой части молекулы образовать химическое соединеніе, такъ какъ при высокой температурѣ оно невозмож но. Вода начинаетъ разлагаться на водородъ и кислородъ уже при 1000° Цельсія. Девиль нашелъ температуру разложения водяного пара отъ 900 до 2500°. Поэтому можетъ думать, что наибольшая температура горящаго гремучаго газа не превышаетъ 2500° Цельсія.

Не такъ уже непреодолимо разысканіе материала, выдерживающихъ такую температуру.

Изъъ этихъ мѣръ наибольшее количество теплоты даетъ соединеніе водорода съ кислородомъ.

Вотъ сколько выдѣляется тепла на единицу въса взятыхъ веществъ при соединеніи ихъ съ кислородомъ. Водородъ при образованіи воды даетъ 34.180, а при образованіи пара—28780, угол при образ. углекислаго газа—8080, углеводороды отъ 10 до 13 тысячъ калорій. По нажъ важны не эти числа, а тѣ которыя приходятся на единицу массы продуктовъ горѣнія: только они даютъ намъ представленіе о пригодности для „ракеты“ горючихъ материала. На единицу массы паровъ воды найдемъ калорій—3200, углекислаго газа—2200, бензина—2370. Вообще, углеводороды при горѣніи, на единицу своей массы, даютъ число большее, чѣмъ для углерода. т. е.
большее 2200, но недоходящее до 3200. Чем больше в углеводород водорода, тем выгоднее огн для "ракеты". Нельзя брать материалы, дающие неустойчивые продукты, как например, охис кальция, или извест.

Один из газов в жидкском виде, именно предпочтительно кислород, полезен, как средство охлаждающее взрывную трубу. Водород же в жидктом виде может быть заменен жидкими или легко стущающимися в жидкость углеводородами. Надо искать также соединений воды с углеродом, которые содержат возможно больше водорода, образовавшиеся, при своем получении из элементов с поглощением теплоты, как например, ацетилен, который, в сознательно мал содержить водород. В последней отношения больше удовлетворяет терпентин, или ксилидары и еще больше метал, или халдатный газ; последний нехорош тым, что трудно стущается в жидкость.

Подобных же соединений не мешает отыскивать и для кислорода.

Надо найти непрочное соединение его с самим собою (в роде озона) или с другими телами, которые бы завали прочны и летучи продукты при соединении с элементами углеводорода, притом с большим вытеснением тепла.

Если для "ракеты" вместо водорода употреблять бензол, или бензин, то для того случая, когда мы варим различных материалов равна массы "ракеты" с ею остальными содержимыми, найдем скорость вылетающих из трубы частиц не в 5700 метров в 1 сек, а только в 4850. А скоростью "ракеты" будет только 3100 метров в 1 сек. Поэтому теперь получим такую таблицу массы взрывчатого материала и скоростей ракеты:

Масса: 1, 3, 7, 15, 31, 63, 127...

Скорость в километрах: 3, 6, 9, 12, 15, 18, 21...

Этих скоростей также достаточно и для междунадежных путешествий.

Углеводороды выгодны, потому что дают очень летучие продукты: волновой пар и углекислый газ; ароматический углеводород, при обыкновенной температуре, не поглощает значительнаго количества теплоты при своем нагревании, какъ жидким и очень холодным чистым водородом.

Важен вопрос о всєх взрывной трубе. Для этого нужно знать давление газовъ внутри ея. Вопросъ этотъ очень сложный и требует обстоятельного математического изложения (и я его подготовляю для печати). Здсь же мы его только слегка коснемся.

Представимъ себѣ начало взрывной трубы, куда въ определенномъ отношении приходятъ газы въ жидкостномъ виде (хоть водородъ и кислородъ). Только части атомовъ вступаетъ въ химическое соединение, потому что повышается до 2500° температура мѣняетъ соединеніе прочихъ атомовъ. Предполагая плотность сжатыхъ газовъ въ единицъ, найдемъ, что упрогость ихъ, приниа въ расчетъ высокую ихъ температуру, не привозит 5 тысячъ атмосферъ, или около 5000 килограмъ на кв. сант. поверхности трубы въ самомъ ея началѣ.

При движении газовъ въ трубѣ и ихъ расширении, температура ихъ должна бы понизиться; по этому нѣкоторое время не будетъ, такъ какъ пониженіе температуры сеась-же дасть возможность продолжится
химической реакции, что опять повышает температуру до 2500°. Итак, до некоторой степени расширения газов, их температура остается постоянной, так как вдыхается теплого газа.

После полного соединения атомов водорода и образования водяного пара, начинается быстрое понижение температуры. Вычисление показывает, что при уменьшении объема, абсолютная температура понижается вдвое. На этом основании составлена следующая таблица расширений и соответствующих абсолютных и обыкновенных температур (приближ.).

<table>
<thead>
<tr>
<th>Расширение</th>
<th>1, 6, 36, 216, 1296, 7776</th>
</tr>
</thead>
<tbody>
<tr>
<td>Темп. абс.</td>
<td>2800, 1400, 700, 350, 175, 87</td>
</tr>
<tr>
<td>Темп. Цельс.</td>
<td>+2500, +1100, +400, +50, -125, -213</td>
</tr>
</tbody>
</table>

Из этого видно, что при расширении разъ в 200 уже выделяется почти вся теплота, превращающаяся в работу поступательного движения газов и "ракеты". При дальнейшем расширении пар обрацается в жидкость и даже, в кристаллы льда, мчащиеся с поразительной быстрой из труб.

Так вот какова грубо картина явлений во взрывной трубе.

Положим, для простоты, что она цилиндрической формы, и определим ее наибольшую толщину и площадь дна.

Пусть въ "ракете" съ человекомъ и всѣма ея органами и запасами, кромѣ запаса взрывчатыхъ веществъ, составить одну тону; ихъ количество примемъ въ 9 тонъ.

Давление на "ракету" положимъ въ 5 разъ больше ея вѣса. Относительно ея тяжести и всѣхъ предметовъ въ ней будетъ 5, т. е. въ 5 разъ больше тяжести на землѣ. Человѣкъ долженъ быть, въ лежачемъ положеніи, погруженъ въ футляръ съ водой. При этомъ можно ручаться за полную безопасность его тѣла.

Итакъ, давленіе газовъ на "ракету" или на дно трубы составить 50 тонъ, или 50000 килограммовъ. А такъ какъ газы въ началѣ трубы даютъ 5000 килограммъ давленія на кв. сантиметръ, то площадь основанія трубы составить 10 кв. сант. Толщину стѣнокъ трубы, принимая лучную сталь и обыкновенную безопасность (6), вычислимъ равной 5,3 сант. при внутреннемъ диаметрѣ въ 8,5 сант. Значеніе вѣтчинъ диаметръ будетъ менѣе 13 сант., а внутреннѣй менѣе 4 сант.

Въ 1 дечиметра такой трубы будетъ около 10 килограммъ, а одного метра—100 килограммъ; но не надо забывать, что въ трубѣ долженъ быстро убывать при удалѣніи отъ ея начала, такъ какъ газы быстро расширяются и давленіе ихъ пропорционально уменьшается, не говоря уже про понижение температуры, которое начинается не сразу, но отступитъ всѣльско отъ начала трубы.

Всё это видно, что труба поглощаетъ очень много изъ вѣса "ракеты". Поэтому изысканія должны быть также направлены въ сторону отысканія материала, гораздо болѣе крѣпкихъ, чѣмъ обыкновенная сталь, которая мо-
жать и не угодно творить нашим целям, помимо ее легкоплавкости.

Определение полного веса трубы без высшей математики затруднительно. Оставляем этот вопрос до более обстоятельного трактата.

Взрывчатые материалы надо каким-либо способом вдавливать в трубу; на это требуется громадная работа, составляющая одну из трудностей дела. Но не надо закрывать глаза. Если "ракета" ввести топу, взрывчатый материал — 9 т. ускорение "ракеты" — 50 м. в секунду, то давление на нее, при наклонном (более выгодном) восхождении составят около 50 тонн. Начальная упругость газов и давление на дно трубы будет 50 тонн. Давление газов на 1 кв. сант. мы приняли в 5 тонн. Теперь, из этих данных, найдем что для получения скорости в 10 килом. в секунду, вращение должно продолжаться около 200 сек.; труба мы должны поставлять в секунду около 45 кило взрывчатого материала.

Скорость их течения, предполагая их среднюю плотность в единицу, будет около 45 метров в сек. Работа их вращения, при огромном давлении в устье, составит работу в 2250 тонно-метров в течении одной секунды, что составит 30.000 паровых лошадей!!!

Получили результат немыслимый для двигателей при настоящем состоянии техники. Поэтому от накачивания обыкновенным способом надо отказаться. Всего проще — вкладывать в трубу извнеший заряд и дать ему взорваться и улечьться. Затем, при отсутствии давления в трубе, вдвинуть другой заряд и т. д. Это должна производить машина и притом с необыкновенной быстротой. Затруднения мы видим и тут.

Заметим, что полезная работа взрывчатых веществ, в нашем снаряде, в среднем, будет не менее 400.000 лошадинных сил, что составляет в 13 раз боле работы вдавливания взрывчатого материала в трубу. Нельзя ли вдавливать этот материал работой самаго взрывания, как инженеру Жиффара вдавливает воду в паровик силой давления находящегося в нем пара??

У самого устья трубы должно быть отверстие, по которому газы поворачивают опять в устье и, в силу своей быстроты, втягивают и вдавливают взрывчатый материал непрерывной струей в самое устье взрывной трубы.

Без сомнения, было бы это осуществимо, если бы нашлись подходящие по тугоплавкости и крепости строительные материалы.

Если принять во внимание громадную силу давления газов на "ракету", достигающую 5 тонн и боле на 1 тонну "ракеты", то вопрос объ управлении ракетой не покажется легким. Слишком выходной конец взрывной трубы и низкого тяжелого наполнения вылетающих газов, мы вызываем боковое давление и имеление положения ракеты. Но общее давление на нее так велико, что прежде чем вы повернете раструб (или руль в нем), ракета уже получила силуное уклонение или даже перевернулась. Ракетам и вообще снарядам, построенным для военных целей, ради устойчивости в направлении, придают быстрое вращательное движение вокруг продольной оси. С нашей "ракетой" этого сделать нельзя, потому что вращение вызовет центробежную силу, от которой постра-
даёт живое существо. Но можно достичь устойчивости, если в ракету поместить два быстро вращающихся тела, оси вращения которых направлены перпендикулярно. Это увеличит в 100 раз ракеты, что неприемлемо. Можно опробовать и экономию доста точно придать несколько оборотов (см. черт. 1); одни обороты будут направлены продольной оси ракеты, а другие перпендикулярны. Хотя масса струи газов меньше, но возрастает их, достигающая 15 кг в секунду.

Если, напр., плотность газов в 2 раза меньше плотности вращающегося диска, а скорость их в 20 раз больше скорости диска, то сопротивление вращению ракеты, благодаря двойной газовой, будет такое же, как и от диска, при одинаковых массах. Даже в средних образованиях людьми и представлением о явлений в ракетах, при их возникновении, очень смутны. У писателей — фантастов описания относительных явлений или отсутствуют, или неверны.

Кажущаяся тяжесть в ракетах зависит от ускорения, получаемого им от давления газов. Так, если ускорение ракеты — 50 метров в сек., то относительная тяжесть в ней будет в 5 раз больше земной, так как ускорение последней составляет 10 метров в сек. Поэтому, во время взрывания, ракета будет усиленная тяжесть в течение 3—4 минут; после прекращения взрывания — тяжесть, как будто уничтожится. Так как ускорение от взрывания будет нуль. Усилённую тяжесть можно легко перенести, погрузившись в купели в газовых комбинациях воды, выделяющих очень немного газа. Должно быть произведено предварительное опыты с помощью большей центробежной машины, также подобной относительной тяжесть.

Такие же опыты нужно произвести с целью выработать условий, необходимых для дыхания и питания человеческого организма в невесомом пространстве.

Выпишем следующее уже даёт представление объ устройстве реактивного снаряда для космических путешествий. Теперь всего уместно указать на схематические чертежи ракеты и привести соответствующее описание (см. черт. 1-й страницы).

Лёгкая, малая, короткая голова камера, разделяющих необозначенных на ракеты состоят из двух камер, чертеже перегона порогом. Объясняетсяяся, необычно и температурой. Объясняется часть взрывной трубы от устава температур.

Через голову содержат угловой из черных точек внизу (почти посередине) означают поперечное сечение труб, протягивающих взрывной труба взрывной труба (см. кругом двух точек) отходят два ветки с быстрыми миазмами газами, которые увлекают их и вставляют капилляры элементы взрывания в устье, подобно инжектору Жиффара, или нароструйному насосу. Свободно спаривающиеся жилки кислород в газообразном и холодном состоянии облегчают проникновение пространство между двумя оболочками ракеты и тьмы препятствует нагреванию внутренности
"ракеты" при быстром движении ее в воздухе.

Взрывная труба дает незначительно оборотов шнур "ракеты", параллельно ее продольной оси и затем незначительно оборотов перпендикулярно к этой оси. Цель — уменьшить вертикальность "ракеты", или облегчить ее управляемость. Эти обороты быстро движущегося газа замедляют массиносодержащие диски. Правое носовое изолированное, т. е. замкнутое со всех сторон помещение заключает:

1. Газы в паре, необходимые для дыхания. 2. Приспособления для сохранения живых существ от удушьевой и удущительной смерти. 3. Запасы для питании. 4. Приспособления для управления, несмотря на лежачее положение в воде. 5. Вещества, поглощающие углекислый газ, дышижмы и вообще все вредные продукты дыхания.

Сдѣлается здесь еще трубные расчеты для сравнения артиллерийских орудий с ракетной трубой.

Хотя я и читалъ, что ядро при опыте получали скорость до 1.200 метровъ въ 1 сек., но на практикѣ дополняется скорость въ 500 метровъ. При этомъ, не считая сопротивления воздуха, ядро, двигаясь вертикально, поднимается на высоту 12½ километровъ. При полетѣ подъ угломъ въ 45°, оно проходитъ наибольшее разстояніе въ горизонтальномъ направлении, именно 25 килом. (23 в.). Летить ядро въ первомъ случаѣ около 100 съ, во второмъ — 70.

При скорости же въ 1.000 метровъ, наиболѣе поднимается 50 килъ, а наиболѣе горизонтальное перемещеніе — 100 килъ. Время полета будетъ вдвое больше.

При 14 дюймовомъ орудіи, длина его въ 10 метровъ и снарядъ (ядеръ) въ 6 метровъ въ 1 тонну, найдемъ, что среднее давленіе въ пушкѣ на кв. сантъ, составить около 1.250 килогр., или 1.250 атмосферъ. При удвоенной же скорости ядра среднее давленіе достигаетъ 5.000 атмосферъ. Максимальное, конечно, гораздо больше. Слѣдовательно, въ пушкѣ давленіе близко къ давленію, принятому нами въ "ракетѣ" (5 тысячъ атм.

Приемъ въ патронѣ пушкѣ массу взрывчатыхъ веществъ въ 1 тонну, а время движения ядра въ каналѣ въ 1/8 сек. (окончательная скорость 500 метровъ), найдемъ, что, въ среднемъ, въ секунду расходуется 25 тоннъ.

Въ патронѣ же "ракетъ" только 45 килогр., т. е. въ 555 разъ меньше. Понятно, что и массиность ракетной взрывной трубы небольшая.

Во взрывной трубѣ "ракеты" выбрасываются не тяжелый ядро, а только модели газовъ. Естественно, что скорости ихъ гораздо больше скорости ядера и достигаетъ 5 километровъ въ секунду. Такого же порядка и скорость получаемая "ракетой". Горячие газы отдѣляютъ свою работу пушечнымъ ядру далеко не въ полномъ видѣ, но только пока находятся въ пушечномъ каналѣ. Выходя изъ него, они еще имѣютъ громадную упругость и высокую температуру, что доказывается громомъ и свьтомъ орудійныхъ взрывовъ. Постепенно растрѣляющаяся взрывная труба "ракеты" настолько длинна, что температура и упругость выходящихъ изъ ракеты газовъ совершенно ничтожна. Такимъ образомъ, въ "ракетѣ" энергія химической реакціи используется почти безъ остатка. Н. Голковский.
Для справок, перечислю тут мои главные работы.
1891 г. Давление жидкости на плоскость (13 стр.) Москва. Труды Объединения Любителей Естествознания. Физич. Отд., том IV. (Математика и опыта).

Как предохранить нежные вещи от толчков (4 стр.). Там же.
1892 г. Аэростат и металлический управляемый, 1 вып., 83 стр. Москва. Отд. Б. изд. (Математика).
1893 г. То же. Вып. 2-й (116 стр. и табл. чертежей. (Математика). На лист. 48 стр. В журнале "Российский Вестник". Москва.
Тяготение, как источник мировой энергии (22 стр.). С.-Петербург. Научное Обозрение.

Возможны ли металлический аэростат. "Наука и Жизнь". № 51—52. Москва. (Цена 5 коп.).
1895 г. Грезы о землеб и небе. 143 стр. Москва. отд. изд.
Аэромань. Наука и Жизнь. 46 стр.; Москва. (Математика).
1896 г. Железный управляемый аэростат на 200 человек. Отд. изд. форм. газ. листа, с табл. чертежей, Калуга. (Цена 15 коп.).

Может быть когда земля заявит жителям других планет о существовании на ней разумных существ. Калужский Вестник. № 68.
1897 г. Продолжительность лучезапасания звезды. Научное Обозрение. 16 стр. С.-Петербург. (Математика).
1898 г. Самостоятельное горизонтальное движение управляемого аэростата. Одесса. Вестник Оптической Физики. 22 стр. (Математика).
1899 г. Давление воздуха на поверхность. Вестник Оп. Физ. 32 стр. Одесса. (Математика и опыта).

Простое учение о воздушном корабле. Москва. Общедоступный Техник. 102 стр.; с табл. чертежей. (Цена 50 коп.).
1900 г. Успехи воздухоплавания в XIX веке. С.-Петербург. Научное Обозрение 10 стр.
1901 г. Вопросы воздухоплавания. Научное Обозрение 18 стр.
1903 г. Излюбленные мировых пространства реактивными приборами. Науч. Общ. 31 стр. Часть 1-я. (Много математики). Сопротивление воздуха. Науч. Обозр. 22 стр. (Опыты).
1904 г. Простое учение о воздушном корабле. Отличается от 1-го издания предельным в 16 стр. Калуга. (Цена 50 коп.).
1905 г. Металлический воздушный корабль. Знание и Искусство. № 8. С.-Петербург.
1910 г. Металлический мешок, изменяющий объем и форму. С.-Петербург. Всемирное Технич. Обозрение, № 3. (Цена 5 коп.).
Металлически аэростать, его выгоды и преимущества. „Воздухоплаватель“. № 11. То-же, приближ, помещено в журнале „Аэро“. С.-Петербург.

Реактивный прибор. „Воздухоплаватель“. № 2.

1911 г. Защита аэроната. 8 стр. (Цена 10 коп.).

Устройство летательного аппарата птиц и насекомых. „Техника Воздухоплавания“. С.-Петербург. 12 стр (Цена 20 коп.).

1911—12 г. Исследование мировых пространств реактивными приборами. С.-Петербург. „Вестник Воздухоплавания“. Около 60 стр. №№ 18—22 и 2—9 (Матем.). Часть II-я.

1913 г. Первая модель чисто металлического аэроната. 16 стр. (Ц. 15 к.).

1914 г. Простейший проект металлического аэроната. 8 стр. (Ц. 10 к.).

Исследование мировых пространств реактивными приборами, Часть III-я. 16 стр. (Цена 15 коп.).

Достать можно у меня и у П. П. Каннинг, (Ногуа, Никитский пер.) только тв брошюры, цена которых тут выставлена (с пересылкой).
К.Э.Циолковский

Космическая философия

Совокупность идей, гипотез, тезисов, составивших содержание философских сочинений К.Э.Циолковского, сам Константин Эдуардович назвал «Космической философией». Её центральным элементом стало смоделированное с помощью научных методов учение о смысле жизни и постижении его в процессе реализации нравственной практики.

О важности этих исследований для человечества говорит утверждение К.Э.Циолковского о том, что теорию ракетостроения он разработал лишь как приложение к своим философским изысканиям.

Учёным написано множество философских работ, которые малоизвестны не только широкому читателю, но и специалистам ввиду их многолетнего замалчивания. Эти книги – попытка прорвать «заговор молчания» вокруг философии русского космического провидца.

Новое мышление невозможно без поиска смысла жизни в единстве населённого космоса.

Обращаясь к своим читателям, К.Э.Циолковский говорит:

«Постараюсь восстановить то, что в сонме тысячелетий утеряно человечеством, отыскать оброненный им философский камень».

...
«Будьте внимательны, напрягите все силы, чтобы усвоить и понять излагаемое.»

...
«За напряжение, за внимание вы будете вознаграждены, не скажу сторонею, это чересчур слабо, но безмерно. Нет слов для выражения тех благ, которые вы получите за свой труд. Нет меры для этих благ. Эта мера есть бесконечность».

К. Э. Циолковский
«Живая вселенная»
1923 г.

© К.Э.Циолковский, 1857-1935
© ООО «Центр информационной безопасности», 2013
Научно-популярное издание

Константин Эдуардович Циолковский

«Космическая философия»

www.tsiolkovsky.org

Руководитель проекта
Николай Красноступ
Дизайн и верстка
Татьяна Колпакова, Евгений Продайко
Вебсайт, хостинг
Евгений Хромых
CMS
Евгений Дужик
Перевод
Александра Гаманенко

Приглашаем всех принять участие в данном проекте!

Если вы хотите и можете оказать содействие данному проекту, свяжитесь с нами по email support@krasnostup.com